Защита минимального напряжения: принцип работы и назначение

Как происходит работа защиты минимального напряжения?

Защита минимального напряжения (далее по тексту ЗМН) используется совместно с другими системами, контролирующими состояние электросети. Основная задача такой защиты – обеспечить работу ответственного оборудования при кратковременных понижениях напряжения. Узнать, как осуществляется этот процесс, можно прочитав о принципе работы ЗМН, ее устройстве и сфере применения. Всю эту информацию Вы найдете в нашей статье.

Кратко о назначении

Как известно, при снижении напряжения питания асинхронных двигателей уменьшается уровень магнитного потока, а, следовательно, и крутящего момента. При этом увеличивается потребление тока, ведущее к снижению уровня напряжения в электросети, что отражается на работе других устройств, подключенных к ней.

Помимо этого не следует забывать о стартовых токах, образующихся при запуске двигателей. ЗМН производит отключение менее важного оборудования, чтобы обеспечить процесс самозапуска ответственных двигателей, при восстановлении параметров электросети. Если автозапуск ответственных электродвигателей не отвечает нормам ТБ или не предполагается условиями техпроцесса, то реле минимального напряжения устанавливается и на это оборудование.

Когда параметры сети не соответствуют минимальному напряжению, то ЗМН производит отключение оборудования и/или подает соответствующий сигнал системе управления или оператору, это может происходить в следующих случаях:

  • При фазном или межфазном коротком замыкании. В этом случае происходит резкое превышение номинального тока, что провоцирует падение напряжения ниже допустимого уровня. Если срабатывают при этом токовые реле, то произойдет полное исчезновение напряжения.
  • Существенное превышение номинальной мощности, что также приводит к падению в питающих цепях напряжения.

Защита производит отключение питания оборудования, не относящегося к категории высокой важности. Это позволяет произвести нормальный автозапуск ответственных электромашин при высоких пусковых токах, в противном случае может произойти ложное срабатывание релейных защит.

Принцип работы защиты минимального напряжения

Вне зависимости от сферы применения ЗМН, ее принцип действия остается неизменным. Объясним алгоритм работы защиты на примере произвольного объекта, где для производственного процесса используется несколько электродвигателей и подключено оборудование собственных нужд. Допустим, на линии питающей объект произошло КЗ, вызвавшее срабатывание выключателя ввода (токовая защита). После завершения ремонтных работ и восстановления питания происходят следующие действия:

  1. Автозапуск двигателей, что приводит к появлению высоких пусковых токов, и, соответственно, к снижению напряжения в сети.
  2. Контакты реле защиты производят отключение неответственных механизмов, то есть оборудования, не принимающего участие в производственном процессе или простой которого не критичен для технологического цикла. Это приводит к нормализации тока и повышению напряжения до номинального уровня, что позволяет произвести штатный автозапуск основных узлов.

Устройство и схема ЗМН

Самый простой вариант при организации ЗМН можно сделать на одном реле, катушка которого запитана от междуфазного напряжения. Пример такой схемы приводится ниже.

Схема ЗМН на одном реле напряжения

Схема ЗМН на одном реле напряжения

К сожалению, такой вариант исполнения не отличатся высокой надежностью. Если произойдет обрыв цепи напряжения, то последует ложное отключение оборудования системой ЗМН. В связи с этим данная схема защиты применяется для отключения неответственных электродвигателей и оборудования собственных нужд.

Чтобы исключить ложное срабатывание системы ЗМН практикуется применение более сложных схем защиты. В качестве примера приведем одну из них, устанавливаемую на четыре асинхронных двигателя.

Схема ЗМН для четырех электродвигателей

Схема ЗМН для четырех электродвигателей

Как видно из приведенной схемы включения ЗМН обмотки реле KVT1-4 подключаются к междуфазным напряжениям (АВ и ВС). Для повышения надежности защиты и исключения КЗ на землю одна из фаз (в нашем случае В) подключается посредством пробивного предохранителя к заземляющей шине. На фазы А и С устанавливаются однофазные АВ (автоматические выключатели). Причем один из них оборудован электромагнитной защитой, а второй – тепловой.

Рассмотрим, как будет вести себя данное устройство релейной защиты в случаях различных повреждений цепи питания:

  • Фазное КЗ. В данном случае не последует отключение выключателей SF2 и SF3, поскольку цепь питания не обустроена глухим заземлением.
  • Междуфазное КЗ. Если замыкание происходит между фазами В и С, то это вызывает отключение выключателя SF3 по току срабатывания. Цепи обмоток KVT1-2 продолжают быть запитаны от номинального напряжения, поэтому данные реле не срабатывают. Что касается KVT3-4, то они включаются, когда произойдет КЗ. Но, как только сработает SF3, на катушки реле подается фаза А (через емкость С1).

Если произойдет замыкание между другими фазами (АС или АВ), произойдет срабатывание SF2, соответственно, напряжение на обмотки KVT1-2 будет подано через емкость C1 от фазы С, а KVT3-4 не сработают.

Как видим, в данной схеме ложное срабатывание маловероятно, для этого должно произойти замыкание всех трех фаз, что вызовет одновременное срабатывание SF2 и SF3.

Ступени срабатывания ЗМН

На практике применяются двухступенчатые системы защиты. Такой алгоритм работы позволяет разграничить реакцию ЗМН в зависимости от напряжения. Рассмотрим работу степеней срабатывания.

1-ая ступень.

Данная ступень защиты активируется при напряжении 70% от номинальной величины (Uном), временная задержка срабатывания устанавливается в диапазоне 0,5-1,5 сек, что соответствует параметрам токовых отсечек АВ. При срабатывании 1-й ступени защиты производится отключение неответсвенного оборудования.

2-ая ступень.

Ее срабатывание происходит при падении напряжения до 50% от номинала. При таких условиях автозапуск электродвигателей невозможен. Задержка активации 2-й ступени устанавливается в диапазоне 10,0-15,0 сек, после чего производится отключение ответственных двигателей. Такое время устанавливается, чтобы дать возможность автоматике подключить резервный источник питания или снизить оперативные токи путем отключения неответственного оборудования.

Пример двухступенчатой ЗМН

Для наглядности приведем схему простой двухступенчатой защиты и кратко опишем алгоритм ее работы.

Двухступенчатая ЗМН

Двухступенчатая ЗМН

Как видим из рисунка отключение неответственного оборудования производит реле времени Т1 (установка срабатывания 0,5 — 1,5 сек.). Его питание производится через замкнутые контакторы трех реле V1, включенных на междуфазное напряжение. При падении Uном ниже 70% от номинала, реле T1 (первая ступень) производит включение выключателя неответственного оборудования, чтобы поднять минимальное остаточное напряжение.

Вторая ступень защиты активируется промежуточным реле напряжения V2, обмотка которого рассчитана на отключение при U ≤ 0.5Uном, через промежуток времени, заданный на Т2 (как правило не более 15 секунд). Если за отведенное время не будет подключен резервный ввод (например, пуск схемы АВР электродвигателей) или не произойдет снижение напряжения, будет производиться отключение ответственного оборудования.

Применение

Безусловно, что рассматриваемая нами защита не лишена недостатков (например, в простых схемах наблюдается ложное срабатывание при нулевом токе), тем не менее она доказала свою эффективность во многих сферах производства. Например, ЗМН устанавливается на электростанции, а также распределительные и трансформаторные подстанции. Это позволяет при максимальных токовых нагрузках отключить от шины подстанции третью категорию потребителей.

Распределительное устройство с ЗМН

Распределительное устройство с ЗМН

Большим плюсом системы ЗМН является то, что она может использоваться совместно с дистанционной, резервной и дифференциальной защитой, а также с устройством автоматического ввода резерва, трансформаторами тока и т.д. Это существенно расширяет сферу применения.

Расчет уставок ЗМН

Уставки рассчитываются исходя из особенностей технологического процесса. Приведем пример расчета пуска схемы типовой двухступенчатой защиты. Напряжение срабатывания первой ступени рассчитывается по следующей формуле: Uз1 = 0,7 х Uном. То есть, 70% от номинального напряжения. Повышение чувствительности системы путем повышение границы падения напряжения может привести к снижению эффективности из-за ложных срабатываний.

Время задержки срабатывания секционных выключателей устанавливается в пределах 0,5 -1,5 сек.

Расчет срабатывания второй ступени защиты выполняется по формуле: Uз2 = 0,5 х Uном.

Как происходит работа защиты минимального напряжения?

Защита минимального напряжения обеспечивает безопасную работу важных узлов, наиболее ответственных механизмов в электрических сетях, на производствах, когда происходит кратковременное исчезновение напряжения в сети. Подает сигнал, отключает группу или секции присоединений схем, электроприборов, двигателей, трансформаторов при понижении напряжения ниже допустимого значения (уставки).

ЗМН

Назначение

ЗМН (защита минимального напряжения) используется совместно с защитами, которые осуществляют контроль сети. Эксплуатируется вкупе с устройством автоматического включения резерва (АВР). ЗМН выполняет отключение или подает соответствующий сигнал пользователю (системе) при возникновении аварий в сети потребителей, в следствии:

  • Короткого замыкания, когда происходят значительные потери электроэнергии. Возникают большие токи, напряжение резко падает.
  • Перегрузки сети. (Мощности источников электропитания не хватает или один из них вышел из строя).

Такое действие обеспечивает безопасность важных механизмов во время самозапуска, когда пусковые токи вызывают снижение напряжения. Автоматика отключает работу менее важных механизмов.

ЗМН 2

Схема ЗМН

Система ЗМН, как правило, выполняется при помощи электромагнитных или электронных реле напряжения. Это своеобразный реагирующий орган в цепи.

Релейные контакты соединяют последовательно, чтобы предотвратить сбой при перегорании предохранителей в электрических цепях. На контакты реле подается фаза через вспомогательный контакт от секционного трансформатора или электрической сети.

Дополнительно в состав змн входят реле:

  • Времени, обеспечивающее последовательность работы в электрической схеме.
  • Промежуточное, коммутирующее управляющие сигналы.
  • Указательное, которое сигнализирует о срабатывании защиты.
  • Минимального напряжения.

Также система защиты на производстве включает линейные контакторы или электромагнитные пускатели.

При понижении показателей до значения 50 процентов от номинального, замыкатель отключается, размыкает, шунтирующий кнопку пуск, контакт, предотвращает самозапуск двигателя, машины.

При такой системе запуск механизмов происходит после нажатия на кнопку, которая замкнет схему.

ЗМН могут работать автономно или совместно с токовыми защитами.

ЗМН 3

Принцип работы ЗМН

Защита от минимального напряжения (ЗМН) имеет идентичный принцип работы во всех сферах защиты по напряжению. Для понимания, функциональность ЗМН можно объяснить на примере электрических двигателей.

Механизмы останавливаются при возникновении КЗ (короткое замыкание). После его ликвидации происходит самозапуск двигателей, подключенных к секциям или шинам. У каждой группы свое входное питание от трансформатора, либо иного источника. Пусковые токи в несколько раз превышают номинальные значения, во время запуска происходит «просадка» напряжения на секциях.

Защита ЗМН отключает незначительных потребителей участка сети — это электродвигатели не влияющие на процесс, их простой не вызовет сбой в производстве. Следовательно, уменьшается суммарный пусковой ток, напряжение в сети не имеет критичной просадки, его хватает на самозапуск главных двигателей или узлов.

Секционный (групповой) самозапуск электрических двигателей начинается после возобновления подачи питания.

ЗМН 4

Принцип работы защиты минимального напряжения

Вне зависимости от сферы применения ЗМН, ее принцип действия остается неизменным. Объясним алгоритм работы защиты на примере произвольного объекта, где для производственного процесса используется несколько электродвигателей и подключено оборудование собственных нужд. Допустим, на линии питающей объект произошло КЗ, вызвавшее срабатывание выключателя ввода (токовая защита). После завершения ремонтных работ и восстановления питания происходят следующие действия:

  1. Автозапуск двигателей, что приводит к появлению высоких пусковых токов, и, соответственно, к снижению напряжения в сети.
  2. Контакты реле защиты производят отключение неответственных механизмов, то есть оборудования, не принимающего участие в производственном процессе или простой которого не критичен для технологического цикла. Это приводит к нормализации тока и повышению напряжения до номинального уровня, что позволяет произвести штатный автозапуск основных узлов.

Система АВР

При длительном отсутствии электрического питания срабатывает отключение и на главные электродвигатели. Это необходимо для запуска АВР (автоматика включения резерва), также этого требует технология производства.

При прекращении подачи электропитания на секционный ввод, срабатывает автоматика, включающая резерв, включается секционный выключатель, обеспечивающий подачу питания от резервного источника.

Минимальное время работы АВР зависит от задержки в системе, контролирующей ввод рабочего напряжения, времени срабатывания промежуточных реле, временных интервалов отключения и включения выключателей рабочего, резервного ввода.

Устройство и принцип работы

Реагирующий орган системы — реле, контролирующее минимальное напряжение. Реле подключено к секционному трансформатору напряжения. В состав защиты входит также реле времени, указательное реле, сигнализирующее о срабатывании защиты, промежуточные реле.

Назначение, которое имеет защита, реагирующая на минимальное напряжение – отключение двигателей менее ответственных механизмов для обеспечения успешного самозапуска более важных.

Чтобы понять, что это значит и для чего нужна защита, рассмотрим ее принцип действия на тепловых электростанциях. Электродвигатели механизмов каждого котлоагрегата подключены к своей секции собственных нужд станции. Каждая секция имеет рабочий ввод питания от своего трансформатора собственных нужд. Кроме этого, секции связаны между собой секционным выключателем. Нормальной считается схема, когда секции питаются от вводов трансформаторов собственных нужд, секционный выключатель при этом отключен. Представим ситуацию, когда исчезает напряжение на вводе питания секции (например, в результате повреждения трансформатора собственных нужд). Рабочий ввод отключается, срабатывает АВР (автоматика включения резерва), включающая секционный выключатель. После чего питание секции осуществляется от другого трансформатора собственных нужд, через секционный выключатель. Минимальное время работы АВР складывается из задержки в системе, контролирующей напряжение рабочего ввода, времени срабатывания промежуточных реле, времени отключения и включения выключателей рабочего и резервного вводов. За это время происходит торможение электродвигателей, питающихся от секции.

После подачи питания начинается групповой самозапуск электродвигателей, присоединенных к секции. При этом, в зависимости от глубины произошедшего торможения имеет место посадка (снижение) напряжения в большей или меньшей степени.

Примечание. При запуске котлоагрегата в штатном режиме, включение механизмов происходит последовательно с большими промежутками времени. Поэтому, при одновременном запуске (пусть даже не до конца заторможенных) механизмов, суммарное значение пускового тока существенно превышает номинальный ток питающего ТСН. Это может вызвать глубокую посадку напряжения на секции.

Защита, реагирующая на минимальное напряжение, имеет две ступени. Срабатывание первой ступени происходит, если снижение достигает отметки 0,7*Uн с выдержкой времени 0,5 с. Вторая ступень имеет уставку 0,5*Uн и время срабатывания до 9 с. Если за время бестоковой паузы произошло минимальное торможение механизмов и напряжение не достигло 70% номинального, самозапуск всех электродвигателей секции проходит успешно, котел продолжает работать.

Если напряжение снижается до 70% и ниже, на время 0,5 секунд, защитная аппаратура запускает первую ступень. Отключаются наименее важные для работы котла механизмы. Это делается для предотвращения дальнейшего снижения напряжения, чтобы дать возможность запуститься ответственным механизмам.

Вывод. Принцип работы первой ступени защиты минимального напряжения служит с целью удержать котлоагрегат в работе путем отключения механизмов, имеющих второстепенное значение.

Дальнейшее снижение напряжения (после работы 1-й ступени защиты) и достижение его уровня 50% номинала на время до 9 секунд означает, что самозапуск ответственных механизмов котла не удался. На этом этапе вопрос о работе котла уже не стоит. Включается схема работы второй ступени. Отключаются оставшиеся механизмы, подключенные к цепям защиты. Остаются только те агрегаты, отключение которых может привести к аварийной ситуации при останове котла. Например, во избежание взрыва угольной пыли в топке котла, недопустимо отключение дымососа.

Вывод. Принцип работы второй ступени защиты преследует цель вывести котел в режим безопасного гашения и останова.

Ступени срабатывания ЗМН

1-ая ступень

Система срабатывает при снижении напряжения до 70 % от номинального значения и с временной выдержкой полсекунды.

При включении первой ступени защиты, отключаются менее важные для производства электродвигатели. Предотвращается дальнейшее снижение одного из главных параметров, обеспечивающего возможность самозапуска главных механизмов.

2-ая ступень

Следующая ступень срабатывает после работы первой ступени. Уставка второй имеет 50 % от номинального значения разности потенциалов, время срабатывания девять секунд.

Самозапуск главных электродвигателей не происходит, отключаются оставшиеся механизмы, подключенные к цепи защиты, но поддерживается работа агрегатов, отключение которых приведет к аварийной ситуации. Вторая ступень обеспечивает режим безопасного торможения и остановки.

ЗМН 5

Пример двухступенчатой ЗМН

Для наглядности приведем схему простой двухступенчатой защиты и кратко опишем алгоритм ее работы.

Двухступенчатая ЗМН

Двухступенчатая ЗМН

Как видим из рисунка отключение неответственного оборудования производит реле времени Т1 (установка срабатывания 0,5 — 1,5 сек.). Его питание производится через замкнутые контакторы трех реле V1, включенных на междуфазное напряжение. При падении Uном ниже 70% от номинала, реле T1 (первая ступень) производит включение выключателя неответственного оборудования, чтобы поднять минимальное остаточное напряжение.

Читайте также:  Алюминиевый реечный потолок - плюсы, минусы, применение, монтаж своими руками

Вторая ступень защиты активируется промежуточным реле напряжения V2, обмотка которого рассчитана на отключение при U ≤ 0.5Uном, через промежуток времени, заданный на Т2 (как правило не более 15 секунд). Если за отведенное время не будет подключен резервный ввод (например, пуск схемы АВР электродвигателей) или не произойдет снижение напряжения, будет производиться отключение ответственного оборудования.

Защита от напряжения

Реле напряжения, на котором основана ЗМН, постоянно контролирует величину значения сети, отключает потребителей, если они выходят за рамки установленных пределов. Возобновляет работу механизмов при возобновлении требуемых параметров.

Защита минимального напряжения может быть выполнена и автоматическими выключателями с расцепителем малого напряжения, который включает автомат при 80 % от номинального значения, а отключает его, если оно становится ниже 50 %.

Расцепитель низкого напряжения подходит для дистанционного отключения автоматики.

ЗМН 6

Онлайн журнал электрика

Защита малого напряжения исключает возможность самозапуска электродвигателя либо работы его при резко пониженном напряжении сети. Эту защиту именуют время от времени нулевой.

У движков неизменного тока параллельного возбуждения и асинхронных движков при понижении напряжения миниатюризируется магнитный поток и пропорциональный ему крутящий момент, что приводит к перегрузке мотора и его перегреву. Это уменьшает срок службы мотора и может быть предпосылкой выхода его из строя. Не считая того, при работе с пониженным напряжением движок, потребляя увеличенный ток, наращивает падение напряжения в сети и усугубляет работу других потребителей.

Самозапуск (самопроизвольный пуск, происходящий при восстановлении напряжения после его исчезновения либо при включении общего рубильника станка магистрали и т. д.) для движков большинства устройств промышленных компаний недопустим по условиям безопасности обслуживающего персонала, из-за угрозы поломки механизма, вследствие вероятного брака продукции и по ряду других обстоятельств. Потому при значимом понижении напряжения в сети либо его исчезновении движки, обычно, должны автоматом отключаться специальной защитой малого напряжения.

Защита малого напряжения (нулевая защита) в схемах контакторно-релейного управления движками осуществляется линейными контакторами, электрическими пускателями либо особыми реле малого напряжения.

К примеру, в схемах дистанционного управления с клавишами «пуск» и «стоп» при питании цепей управления и основных цепей от общего источника защиту малого напряжения делает электрический пускатель. В схемах управления крановыми движками — линейный контактор.

Напряжение отпускания пускателей и контакторов составляет около 40 — 50% от номинального напряжения катушки, потому при значимом понижении либо полном исчезновении напряжения в сети пускатель либо контактор выпадает, отключая главными контактами движок от сети.

Сразу размыкается его контакт, шунтирующий кнопку подачи команды «пуск», что исключает возможность самопроизвольного срабатывания магнитного пускателя и включение мотора после восстановления напряжения. Повторный запуск мотора в данном случае вероятен только после повторного нажатия на кнопку «пуск», т. е. только по команде рабочего, обслуживающего механизм.

В схеме автоматического управления, где пускатели движков врубаются не клавишами, а разными элементами автоматики, работающими без роли оператора, защита малого напряжения производится особым реле малого напряжения. При понижении либо исчезновении напряжения реле малого напряжения отключается, разрывает цепи и тем самым выключает все аппараты схемы управления.

Если подача команд осуществляется командоконтроллером либо ключом управления с фиксированными положениями ручки, защита малого напряжения также осуществляется особым реле, обмотка которого врубается через размыкающий контакт командоконтроллера, замкнутый только при положении ручки на нуле и разомкнутый во всех других положениях. Контакты всех видов защит, действующих на полное отключение установки, врубаются поочередно в цепь обмотки реле малого напряжения.

Защита малого напряжения может быть выполнена автоматическими выключателями (автоматами) с расцепителем малого напряжения, разрешающим включение автомата при напряжении сети не ниже 80 % от номинального и автоматом отключающим включенный автомат при исчезновении напряжения либо понижении его до 50% от номинального.

Расцепитель малого напряжения может быть применен для дистанционного отключения автомата, зачем в цепь его обмотки нужно включить размыкающий контакт кнопки либо другого аппарата. Некие автоматы изготовляются со специальной обмоткой отключения, выключающей автомат при включении ее под напряжение.

Школа для электрика

Достоинства

  • Устройства змн (реле, автоматические выключатели) имеют небольшие габариты, подходят для установки на стальную, алюминиевую или гальваническую рейку (DIN-рейку).
  • Некоторые модели подходят для включения в розетку. Пользователь может обеспечить защиту группе бытовых электроприборов, не изменяя конфигурацию проводки.
  • Доступность. Низкая стоимость позволяет использовать реле или группу реле простому обывателю, а не только на производстве.
  • Автоматика практически мгновенно реагирует на понижение напряжения в сети, отключая и обеспечивая бесперебойную работу механизмам.

Недостатки

  • При защите с помощью одного реле возможна неправильная работа, если произошел обрыв в цепи. Такая релейная защита подходит только для неответственных механизмов.
  • Не устраняет колебания напряжения в сети.
  • После включения выключателя ввода, может произойти его несанкционированное отключение. Происходит такое от задержки срабатывания реле. Сигнал на отключение выключателя ввода приходит раньше, чем срабатывает реле напряжения, а временное и выходное (змн) реле возвращаются в исходное состояние.

ЗМН 7

Читайте также: Как разобрать и почистить водонагреватель Термекс: пошаговая инструкция и подробное видео

Общие функции платформы Сириус-2:

  • Выполнение функций защит, автоматики и управления, определенных ПУЭ и ПТЭ;
  • Задание внутренней конфигурации (ввод/вывод защит и автоматики, выбор защитных характеристик);
  • Ввод и хранение уставок защит и автоматики;
  • Контроль и индикацию положения выключателя, а также контроль исправности его цепей управления;
  • Определение места повреждения линии (для воздушных линий);
  • Передачу параметров аварии, ввод и изменение уставок по линии связи;
  • Непрерывный оперативный контроль работоспособности (самодиагностику) в течение всего времени работы;
  • Блокировку всех выходов при неисправности устройства для исключения ложных срабатываний;
  • Получение дискретных сигналов управления и блокировок, выдачу команд управления, аварийной и предупредительной сигнализации;
  • Гальваническую развязку всех входов и выходов, включая питание, для обеспечения высокой помехозащищенности;
  • Высокое сопротивление и прочность изоляции входов и выходов относительно корпуса и между собой.

Применение

Несмотря на некоторые недостатки, защита минимального напряжения тесно связана с производственными процессами, обеспечивает надежное функционирование техническому оборудованию.

Применяется для обеспечения защиты на электростанциях, обеспечивает работу важных механизмов при кратковременном исчезновении собственного питания. Устанавливается на проблемных участках электросети и подстанциях, отключая в первую очередь потребителей третьей категории. Обеспечивает сохранение напряжения на жизненно-важных объектах (больницы, железная дорога, связь, водопровод, канализация).

ЗМН 8

Принцип работы дугогасящего реактора. Виды и особенности применения

Защита минимального напряжения обеспечивает безопасную работу важных узлов, наиболее ответственных механизмов в электрических сетях, на производствах, когда происходит кратковременное исчезновение напряжения в сети. Подает сигнал, отключает группу или секции присоединений схем, электроприборов, двигателей, трансформаторов при понижении напряжения ниже допустимого значения (уставки).

ЗМН

Назначение

ЗМН (защита минимального напряжения) используется совместно с защитами, которые осуществляют контроль сети. Эксплуатируется вкупе с устройством автоматического включения резерва (АВР). ЗМН выполняет отключение или подает соответствующий сигнал пользователю (системе) при возникновении аварий в сети потребителей, в следствии:

  • Короткого замыкания, когда происходят значительные потери электроэнергии. Возникают большие токи, напряжение резко падает.
  • Перегрузки сети. (Мощности источников электропитания не хватает или один из них вышел из строя).

Такое действие обеспечивает безопасность важных механизмов во время самозапуска, когда пусковые токи вызывают снижение напряжения. Автоматика отключает работу менее важных механизмов.

Дугогасящий реактор

дугогасящий реактор в разрезе

В современных схемах электроснабжения применяются многочисленные системы и аппаратура защиты. Чтобы избежать перебоев в электроснабжении потребителей, применяют одно из специальных средств защиты при однофазном замыкании на землю — дугогасящие реакторы. Они представляют собой электрические аппараты, предназначенные для компенсации емкостной составляющей тока при замыкании на землю.

Используются реакторы в основном в сетях с изолированной нейтралью напряжением от 6 до 35 кВ. В сетях напряжением от 110 до 750 кВ используют глухозаземленную нейтраль.

Схема ЗМН

Система ЗМН, как правило, выполняется при помощи электромагнитных или электронных реле напряжения. Это своеобразный реагирующий орган в цепи.

Релейные контакты соединяют последовательно, чтобы предотвратить сбой при перегорании предохранителей в электрических цепях. На контакты реле подается фаза через вспомогательный контакт от секционного трансформатора или электрической сети.

Дополнительно в состав змн входят реле:

  • Времени, обеспечивающее последовательность работы в электрической схеме.
  • Промежуточное, коммутирующее управляющие сигналы.
  • Указательное, которое сигнализирует о срабатывании защиты.
  • Минимального напряжения.

Также система защиты на производстве включает линейные контакторы или электромагнитные пускатели.

При понижении показателей до значения 50 процентов от номинального, замыкатель отключается, размыкает, шунтирующий кнопку пуск, контакт, предотвращает самозапуск двигателя, машины.

При такой системе запуск механизмов происходит после нажатия на кнопку, которая замкнет схему.

ЗМН могут работать автономно или совместно с токовыми защитами.

ЗМН 3

Устройство и схема ЗМН

Самый простой вариант при организации ЗМН можно сделать на одном реле, катушка которого запитана от междуфазного напряжения. Пример такой схемы приводится ниже.

Схема ЗМН на одном реле напряжения

К сожалению, такой вариант исполнения не отличатся высокой надежностью. Если произойдет обрыв цепи напряжения, то последует ложное отключение оборудования системой ЗМН. В связи с этим данная схема защиты применяется для отключения неответственных электродвигателей и оборудования собственных нужд.

Чтобы исключить ложное срабатывание системы ЗМН практикуется применение более сложных схем защиты. В качестве примера приведем одну из них, устанавливаемую на четыре асинхронных двигателя.

Читайте также: Однолинейная схема электроснабжения образец в ворде. Однолинейная схема электроснабжения. Однолинейные схемы

Схема ЗМН для четырех электродвигателей

Схема ЗМН для четырех электродвигателей

Как видно из приведенной схемы включения ЗМН обмотки реле KVT1-4 подключаются к междуфазным напряжениям (АВ и ВС). Для повышения надежности защиты и исключения КЗ на землю одна из фаз (в нашем случае В) подключается посредством пробивного предохранителя к заземляющей шине. На фазы А и С устанавливаются однофазные АВ (автоматические выключатели). Причем один из них оборудован электромагнитной защитой, а второй – тепловой.

Рассмотрим, как будет вести себя данное устройство релейной защиты в случаях различных повреждений цепи питания:

  • Фазное КЗ. В данном случае не последует отключение выключателей SF2 и SF3, поскольку цепь питания не обустроена глухим заземлением.
  • Междуфазное КЗ. Если замыкание происходит между фазами В и С, то это вызывает отключение выключателя SF3 по току срабатывания. Цепи обмоток KVT1-2 продолжают быть запитаны от номинального напряжения, поэтому данные реле не срабатывают. Что касается KVT3-4, то они включаются, когда произойдет КЗ. Но, как только сработает SF3, на катушки реле подается фаза А (через емкость С1).

Если произойдет замыкание между другими фазами (АС или АВ), произойдет срабатывание SF2, соответственно, напряжение на обмотки KVT1-2 будет подано через емкость C1 от фазы С, а KVT3-4 не сработают.

Как видим, в данной схеме ложное срабатывание маловероятно, для этого должно произойти замыкание всех трех фаз, что вызовет одновременное срабатывание SF2 и SF3.

Принцип работы ЗМН

Защита от минимального напряжения (ЗМН) имеет идентичный принцип работы во всех сферах защиты по напряжению. Для понимания, функциональность ЗМН можно объяснить на примере электрических двигателей.

Механизмы останавливаются при возникновении КЗ (короткое замыкание). После его ликвидации происходит самозапуск двигателей, подключенных к секциям или шинам. У каждой группы свое входное питание от трансформатора, либо иного источника. Пусковые токи в несколько раз превышают номинальные значения, во время запуска происходит «просадка» напряжения на секциях.

Защита ЗМН отключает незначительных потребителей участка сети — это электродвигатели не влияющие на процесс, их простой не вызовет сбой в производстве. Следовательно, уменьшается суммарный пусковой ток, напряжение в сети не имеет критичной просадки, его хватает на самозапуск главных двигателей или узлов.

Секционный (групповой) самозапуск электрических двигателей начинается после возобновления подачи питания.

ЗМН 4

Виды и состав реакторов

устройство в действии

Дугогасящие реакторы, как и любое специализированное оборудование, разделяют по некоторым категориям.

По точности регулировки реакторы разделяют на несколько видов:

  • неуправляемые — не имеют возможности регулирования, их изготавливают индивидуально по заданным параметрам;
  • реакторы со ступенчатой регулировкой, имеют несколько определенных программ настройки;
  • аппараты с плавной регулировкой — это самый практичный тип дугогасящих реакторов, позволяет подбирать оптимальные параметры для лучшей защиты.

По способу настройки выделяют:

  • со ступенчатой регулировкой с отпайками от основной обмотки; регулировка происходит ступенчато — в зависимости от числа витков;
  • плунжерные позволяют регулировать индуктивность в зависимости от расположения сердечника в катушке;
  • реакторы с дополнительным подмагничиванием имеют сторонний источник индуктивности усиливающий основной.

По управлению реакторы разделяют на:

Читайте также: Вышибает дифавтомат при включении кондиционера – При включении кондиционера вылетают электрические пробки, можно его отремонтировать? / Ремонт быт. техники / Дом, ремонт, производство / Вопросы специа

  • Без управления. Реакторы довольно сложны в обслуживании, настройка индуктивности в них — это обычно длительный процесс, который предусматривает отключение самого реактора от сети. В основном это ступенчатые реакторы.
  • С управляемым приводом. Они позволяют регулировать индуктивность дистанционно, не отключая их от сети.
  • С автоматизированным управлением. Данный вид позволяет автоматически регулировать индуктивность в зависимости от условий работы сети.

Дугогасящие реакторы представляют собой обычный трансформатор. В зависимости от условий, изготавливают сухие и маслонаполненные, с постоянным зазором между сердечником и катушкой, а также с изменяемым.

Система АВР

При длительном отсутствии электрического питания срабатывает отключение и на главные электродвигатели. Это необходимо для запуска АВР (автоматика включения резерва), также этого требует технология производства.

При прекращении подачи электропитания на секционный ввод, срабатывает автоматика, включающая резерв, включается секционный выключатель, обеспечивающий подачу питания от резервного источника.

Минимальное время работы АВР зависит от задержки в системе, контролирующей ввод рабочего напряжения, времени срабатывания промежуточных реле, временных интервалов отключения и включения выключателей рабочего, резервного ввода.

Ступени срабатывания ЗМН

1-ая ступень

Система срабатывает при снижении напряжения до 70 % от номинального значения и с временной выдержкой полсекунды.

При включении первой ступени защиты, отключаются менее важные для производства электродвигатели. Предотвращается дальнейшее снижение одного из главных параметров, обеспечивающего возможность самозапуска главных механизмов.

2-ая ступень

Следующая ступень срабатывает после работы первой ступени. Уставка второй имеет 50 % от номинального значения разности потенциалов, время срабатывания девять секунд.

Самозапуск главных электродвигателей не происходит, отключаются оставшиеся механизмы, подключенные к цепи защиты, но поддерживается работа агрегатов, отключение которых приведет к аварийной ситуации. Вторая ступень обеспечивает режим безопасного торможения и остановки.

ЗМН 5

Принцип действия

Для того чтобы избежать перебоев в электроснабжении потребителей, применяют компенсацию активной составляющей путем выравнивания при помощи индуктивной составляющей.

На этом и основан принцип дугогасящего реактора. Индуктивный и емкостной токи противоположны по фазе, равны по значению, и по отношению к источнику энергии взаимно компенсируются в точке замыкания на землю, что приводит к затуханию электрической дуги.

Это позволяет сохранить токоведущие части в нетронутом состоянии, а также избежать выхода из строя оборудования при замыкании на землю.

Работа сети электрического тока с изолированной нейтралью не превышает 6 часов, чего вполне достаточно для того, чтобы найти и устранить неисправность на линии передач. Быстрое устранение неисправности — залог стабильной работы оборудования потребителей.

Защита от напряжения

Реле напряжения, на котором основана ЗМН, постоянно контролирует величину значения сети, отключает потребителей, если они выходят за рамки установленных пределов. Возобновляет работу механизмов при возобновлении требуемых параметров.

Защита минимального напряжения может быть выполнена и автоматическими выключателями с расцепителем малого напряжения, который включает автомат при 80 % от номинального значения, а отключает его, если оно становится ниже 50 %.

Расцепитель низкого напряжения подходит для дистанционного отключения автоматики.

ЗМН 6

Достоинства

  • Устройства змн (реле, автоматические выключатели) имеют небольшие габариты, подходят для установки на стальную, алюминиевую или гальваническую рейку (DIN-рейку).
  • Некоторые модели подходят для включения в розетку. Пользователь может обеспечить защиту группе бытовых электроприборов, не изменяя конфигурацию проводки.
  • Доступность. Низкая стоимость позволяет использовать реле или группу реле простому обывателю, а не только на производстве.
  • Автоматика практически мгновенно реагирует на понижение напряжения в сети, отключая и обеспечивая бесперебойную работу механизмам.
Читайте также:  Как выбрать кухонный чоппер-измельчитель для овощей и фруктов, специй, мяса и других продуктов

Недостатки

  • При защите с помощью одного реле возможна неправильная работа, если произошел обрыв в цепи. Такая релейная защита подходит только для неответственных механизмов.
  • Не устраняет колебания напряжения в сети.
  • После включения выключателя ввода, может произойти его несанкционированное отключение. Происходит такое от задержки срабатывания реле. Сигнал на отключение выключателя ввода приходит раньше, чем срабатывает реле напряжения, а временное и выходное (змн) реле возвращаются в исходное состояние.

Принцип действия максимальной токовой защиты

При достижении током величины уставки подается сигнал на срабатывание реле времени с заданной выдержкой времени. Затем после реле времени сигнал идет на промежуточное реле, которое мгновенно отправляет ток в цепь отключения выключателя.

У зависимых защит выдержка времени задается уставкой на реле, у независимых — выдержка зависит от величины тока. Зависимые защиты проще отстраивать и согласовывать.

Схема защиты МТЗ

На рисунке выше приведена схема максимальной токовой защиты — токовые цепи и цепи управления.

Применение

Несмотря на некоторые недостатки, защита минимального напряжения тесно связана с производственными процессами, обеспечивает надежное функционирование техническому оборудованию.

Применяется для обеспечения защиты на электростанциях, обеспечивает работу важных механизмов при кратковременном исчезновении собственного питания. Устанавливается на проблемных участках электросети и подстанциях, отключая в первую очередь потребителей третьей категории. Обеспечивает сохранение напряжения на жизненно-важных объектах (больницы, железная дорога, связь, водопровод, канализация).

Защита минимального напряжения принцип работы

Защита минимального напряжения обеспечивает безопасную работу важных узлов, наиболее ответственных механизмов в электрических сетях, на производствах, когда происходит кратковременное исчезновение напряжения в сети. Подает сигнал, отключает группу или секции присоединений схем, электроприборов, двигателей, трансформаторов при понижении напряжения ниже допустимого значения (уставки).

ЗМН

Назначение

ЗМН (защита минимального напряжения) используется совместно с защитами, которые осуществляют контроль сети. Эксплуатируется вкупе с устройством автоматического включения резерва (АВР). ЗМН выполняет отключение или подает соответствующий сигнал пользователю (системе) при возникновении аварий в сети потребителей, в следствии:

  • Короткого замыкания, когда происходят значительные потери электроэнергии. Возникают большие токи, напряжение резко падает.
  • Перегрузки сети. (Мощности источников электропитания не хватает или один из них вышел из строя).

Такое действие обеспечивает безопасность важных механизмов во время самозапуска, когда пусковые токи вызывают снижение напряжения. Автоматика отключает работу менее важных механизмов.

ЗМН 2

Схема ЗМН

Система ЗМН, как правило, выполняется при помощи электромагнитных или электронных реле напряжения. Это своеобразный реагирующий орган в цепи.

Релейные контакты соединяют последовательно, чтобы предотвратить сбой при перегорании предохранителей в электрических цепях. На контакты реле подается фаза через вспомогательный контакт от секционного трансформатора или электрической сети.

Дополнительно в состав змн входят реле:

  • Времени, обеспечивающее последовательность работы в электрической схеме.
  • Промежуточное, коммутирующее управляющие сигналы.
  • Указательное, которое сигнализирует о срабатывании защиты.
  • Минимального напряжения.

Также система защиты на производстве включает линейные контакторы или электромагнитные пускатели.

При понижении показателей до значения 50 процентов от номинального, замыкатель отключается, размыкает, шунтирующий кнопку пуск, контакт, предотвращает самозапуск двигателя, машины.

При такой системе запуск механизмов происходит после нажатия на кнопку, которая замкнет схему.

ЗМН могут работать автономно или совместно с токовыми защитами.

ЗМН 3

Защита минимального напряжения ЗМН: принцип работы

Защита минимального напряжения принцип работы

Защита минимального напряжения обеспечивает безопасную работу важных узлов, наиболее ответственных механизмов в электрических сетях, на производствах, когда происходит кратковременное исчезновение напряжения в сети. Подает сигнал, отключает группу или секции присоединений схем, электроприборов, двигателей, трансформаторов при понижении напряжения ниже допустимого значения (уставки).

Назначение

ЗМН (защита минимального напряжения) используется совместно с защитами, которые осуществляют контроль сети. Эксплуатируется вкупе с устройством автоматического включения резерва (АВР). ЗМН выполняет отключение или подает соответствующий сигнал пользователю (системе) при возникновении аварий в сети потребителей, в следствии:

  • Короткого замыкания, когда происходят значительные потери электроэнергии. Возникают большие токи, напряжение резко падает.
  • Перегрузки сети. (Мощности источников электропитания не хватает или один из них вышел из строя).

Такое действие обеспечивает безопасность важных механизмов во время самозапуска, когда пусковые токи вызывают снижение напряжения. Автоматика отключает работу менее важных механизмов.

Схема ЗМН

Система ЗМН, как правило, выполняется при помощи электромагнитных или электронных реле напряжения. Это своеобразный реагирующий орган в цепи.

Релейные контакты соединяют последовательно, чтобы предотвратить сбой при перегорании предохранителей в электрических цепях. На контакты реле подается фаза через вспомогательный контакт от секционного трансформатора или электрической сети.

Дополнительно в состав змн входят реле:

  • Времени, обеспечивающее последовательность работы в электрической схеме.
  • Промежуточное, коммутирующее управляющие сигналы.
  • Указательное, которое сигнализирует о срабатывании защиты.
  • Минимального напряжения.

Также система защиты на производстве включает линейные контакторы или электромагнитные пускатели.

При понижении показателей до значения 50 процентов от номинального, замыкатель отключается, размыкает, шунтирующий кнопку пуск, контакт, предотвращает самозапуск двигателя, машины.

При такой системе запуск механизмов происходит после нажатия на кнопку, которая замкнет схему.

ЗМН могут работать автономно или совместно с токовыми защитами.

Принцип работы ЗМН

Защита от минимального напряжения (ЗМН) имеет идентичный принцип работы во всех сферах защиты по напряжению. Для понимания, функциональность ЗМН можно объяснить на примере электрических двигателей.

Механизмы останавливаются при возникновении КЗ (короткое замыкание). После его ликвидации происходит самозапуск двигателей, подключенных к секциям или шинам. У каждой группы свое входное питание от трансформатора, либо иного источника. Пусковые токи в несколько раз превышают номинальные значения, во время запуска происходит «просадка» напряжения на секциях.

Принцип работы ЗМН

Защита от минимального напряжения (ЗМН) имеет идентичный принцип работы во всех сферах защиты по напряжению. Для понимания, функциональность ЗМН можно объяснить на примере электрических двигателей.

Механизмы останавливаются при возникновении КЗ (короткое замыкание). После его ликвидации происходит самозапуск двигателей, подключенных к секциям или шинам. У каждой группы свое входное питание от трансформатора, либо иного источника. Пусковые токи в несколько раз превышают номинальные значения, во время запуска происходит «просадка» напряжения на секциях.

Защита ЗМН отключает незначительных потребителей участка сети — это электродвигатели не влияющие на процесс, их простой не вызовет сбой в производстве. Следовательно, уменьшается суммарный пусковой ток, напряжение в сети не имеет критичной просадки, его хватает на самозапуск главных двигателей или узлов.

Секционный (групповой) самозапуск электрических двигателей начинается после возобновления подачи питания.

ЗМН 4

Характеристики функций защит

  • Карта заказа
  • Техническая документация

Советуем изучить — Тиристорный электропривод монорельсовой дороги

Система АВР

При длительном отсутствии электрического питания срабатывает отключение и на главные электродвигатели. Это необходимо для запуска АВР (автоматика включения резерва), также этого требует технология производства.

При прекращении подачи электропитания на секционный ввод, срабатывает автоматика, включающая резерв, включается секционный выключатель, обеспечивающий подачу питания от резервного источника.

Минимальное время работы АВР зависит от задержки в системе, контролирующей ввод рабочего напряжения, времени срабатывания промежуточных реле, временных интервалов отключения и включения выключателей рабочего, резервного ввода.

Как работает минимальная защита

Работа минимального

С помощью реле, которое контролирует значение минимального напряжения, работает вся система. По сути, именно реле является ядром конструкции защиты.

Этот элемент контроля соединён с трансформатором напряжения определённой группы. Защитная система включает в себя и другие части:

  1. Реле времени.
  2. Реле указательное, для подачи сигнала о том, что защита сработала.
  3. Реле промежуточного типа.

Система минимальной защиты, о которой мы рассказываем в статье, реагирует отключением элементов с менее значительным функциями. Это обеспечивает работу важнейших групп.

Работа минимального

Для лучшего понимания работы защитной системы объясним её действия на основе работы на тепловых электрических станциях. Электрические двигатели котловых агрегатов подключаются к нужным группам, чтобы обеспечивать себе стабильную работу.

Группы в свою очередь подключаются к своим трансформаторам, тоже для обеспечения своей работы. Секционный выключатель контролирует связь между группами.

Как правило, при правильном питании групп выключатель, связывающий группы, не функционирует.

Теперь представьте, что в одной из секций питание пропадает, например, из-за поломки в трансформаторе. Ввод, обеспечивающий питание, отключается. Автоматическое включение резерва срабатывает, после чего выключатель начинает функционировать.

Работа минимального

Группа начинает получать электричество не от своего трансформатора посредством секционного выключателя. Период срабатывания автоматического включения резерва зависит от задержек в системе.

Обычно это зависит от суммы времени срабатывания всех реле, которые мы упоминали в самом начале статьи. В это время электрические двигатели, работающие от повреждённой группы, останавливают свою работу.

Когда питание подаётся к группе, электрические двигатели самостоятельно начинают свой запуск от секции, к которой они подключены. В этом случае из-за того, что в системе работы всего устройства случилась заминка, напряжение может понижать значение.

Обратите внимание! Когда котловой агрегат начинает работы в обычно режиме, устройство может постепенно включаться, и включение растянется на какое-то время. Когда запуск происходит одновременно, сумма всех значений пусковых токов может превосходить значение номинального тока трансформатора собственных нужд. По этой причине напряжение может сильно упасть.

Система защиты, которую мы описываем в статье, срабатывает в несколько этапов.

Первый этап срабатывания случается, если минимальное напряжение в период меньше одной секунды находится на отметке 0,7. Второй этап ориентирован на десять секунд и напряжение 0,5.

В случае если в процессе паузы устройство сильно затормозило и не достигло повышенных значений напряжения, электрические двигатели реализуют самостоятельный запуск. Благодаря этому устройство успешно функционирует.

Когда напряжения снижено до семидесяти процентов или ещё меньших значений на период менее одной секунды, защита реализуется на первом этапе.

Отключатся устройства, которые не являются самыми важными для функционирования котла. Благодаря этому напряжение не будет снижаться, и котёл сможет продолжить работы.

В итоге можно сделать вывод о том, что благодаря защите в несколько этапов система помогает котлу работать. Работа осуществляется за счёт отключенных секций или групп, переключая нужные секции к другому трансформатору.

При срабатывании первого этапа, если напряжение понизиться до пятидесяти процентов на период девяти секунд, можно говорить о том, что котёл не будет запускаться самостоятельно.

В этом случае котёл не будет работать. Реализуется второй этап системы защиты. Другие элементы остановятся. Останутся только те элементы системы, которые при отключении не приведут к аварии.

Так, в котле не может быть отключён дымосос, так как его отключение может привести к взрыву.

Говоря о втором этапе, реализация этого шага помогает защитной системе медленно остановить устройство с минимальными потерями для аппарата.

Ступени срабатывания ЗМН

1-ая ступень

Система срабатывает при снижении напряжения до 70 % от номинального значения и с временной выдержкой полсекунды.

При включении первой ступени защиты, отключаются менее важные для производства электродвигатели. Предотвращается дальнейшее снижение одного из главных параметров, обеспечивающего возможность самозапуска главных механизмов.

2-ая ступень

Следующая ступень срабатывает после работы первой ступени. Уставка второй имеет 50 % от номинального значения разности потенциалов, время срабатывания девять секунд.

Самозапуск главных электродвигателей не происходит, отключаются оставшиеся механизмы, подключенные к цепи защиты, но поддерживается работа агрегатов, отключение которых приведет к аварийной ситуации. Вторая ступень обеспечивает режим безопасного торможения и остановки.

ЗМН 5

Защита от напряжения

Реле напряжения, на котором основана ЗМН, постоянно контролирует величину значения сети, отключает потребителей, если они выходят за рамки установленных пределов. Возобновляет работу механизмов при возобновлении требуемых параметров.

Защита минимального напряжения может быть выполнена и автоматическими выключателями с расцепителем малого напряжения, который включает автомат при 80 % от номинального значения, а отключает его, если оно становится ниже 50 %.

Расцепитель низкого напряжения подходит для дистанционного отключения автоматики.

ЗМН 6

Достоинства

  • Устройства змн (реле, автоматические выключатели) имеют небольшие габариты, подходят для установки на стальную, алюминиевую или гальваническую рейку (DIN-рейку).
  • Некоторые модели подходят для включения в розетку. Пользователь может обеспечить защиту группе бытовых электроприборов, не изменяя конфигурацию проводки.
  • Доступность. Низкая стоимость позволяет использовать реле или группу реле простому обывателю, а не только на производстве.
  • Автоматика практически мгновенно реагирует на понижение напряжения в сети, отключая и обеспечивая бесперебойную работу механизмам.

Недостатки

  • При защите с помощью одного реле возможна неправильная работа, если произошел обрыв в цепи. Такая релейная защита подходит только для неответственных механизмов.
  • Не устраняет колебания напряжения в сети.
  • После включения выключателя ввода, может произойти его несанкционированное отключение. Происходит такое от задержки срабатывания реле. Сигнал на отключение выключателя ввода приходит раньше, чем срабатывает реле напряжения, а временное и выходное (змн) реле возвращаются в исходное состояние.

ЗМН 7

Устройство и схема ЗМН

Самый простой вариант при организации ЗМН можно сделать на одном реле, катушка которого запитана от междуфазного напряжения. Пример такой схемы приводится ниже.

К сожалению, такой вариант исполнения не отличатся высокой надежностью. Если произойдет обрыв цепи напряжения, то последует ложное отключение оборудования системой ЗМН. В связи с этим данная схема защиты применяется для отключения неответственных электродвигателей и оборудования собственных нужд.

Чтобы исключить ложное срабатывание системы ЗМН практикуется применение более сложных схем защиты. В качестве примера приведем одну из них, устанавливаемую на четыре асинхронных двигателя.

Как видно из приведенной схемы включения ЗМН обмотки реле KVT1-4 подключаются к междуфазным напряжениям (АВ и ВС). Для повышения надежности защиты и исключения КЗ на землю одна из фаз (в нашем случае В) подключается посредством пробивного предохранителя к заземляющей шине. На фазы А и С устанавливаются однофазные АВ (автоматические выключатели). Причем один из них оборудован электромагнитной защитой, а второй – тепловой.

Рассмотрим, как будет вести себя данное устройство релейной защиты в случаях различных повреждений цепи питания:

  • Фазное КЗ. В данном случае не последует отключение выключателей SF2 и SF3, поскольку цепь питания не обустроена глухим заземлением.
  • Междуфазное КЗ. Если замыкание происходит между фазами В и С, то это вызывает отключение выключателя SF3 по току срабатывания. Цепи обмоток KVT1-2 продолжают быть запитаны от номинального напряжения, поэтому данные реле не срабатывают. Что касается KVT3-4, то они включаются, когда произойдет КЗ. Но, как только сработает SF3, на катушки реле подается фаза А (через емкость С1).

Если произойдет замыкание между другими фазами (АС или АВ), произойдет срабатывание SF2, соответственно, напряжение на обмотки KVT1-2 будет подано через емкость C1 от фазы С, а KVT3-4 не сработают.

Как видим, в данной схеме ложное срабатывание маловероятно, для этого должно произойти замыкание всех трех фаз, что вызовет одновременное срабатывание SF2 и SF3.

Применение

Несмотря на некоторые недостатки, защита минимального напряжения тесно связана с производственными процессами, обеспечивает надежное функционирование техническому оборудованию.

Применяется для обеспечения защиты на электростанциях, обеспечивает работу важных механизмов при кратковременном исчезновении собственного питания. Устанавливается на проблемных участках электросети и подстанциях, отключая в первую очередь потребителей третьей категории. Обеспечивает сохранение напряжения на жизненно-важных объектах (больницы, железная дорога, связь, водопровод, канализация).

ЗМН 8

Вывод

Защита минимального напряжения зависит от того, как именно функционирует устройство, с которым она связана. На подстанции располагаются элементы защитной системы, которые помогает питать всё оборудование.

По сути, только представляя, как именно функционирует минимальная защита, можно понять принцип её действия в любой системе и взаимодействие с механизмами.

Читайте также:  Защитное зануление. Работа и устройство. Применение и особенности

Это основная информация, которую нужно знать о защите, реагирующей на минимальное напряжение. Постарайтесь обезопасить оборудование, чтобы электрические установки работали долгое время в сетях с любым напряжением!

Как работает защита минимального напряжения?

Защита минимального напряжения называется групповой или секционной. Групповой она является потому, что воздействует на отключение группы присоединений, в отличие от большинства других защит. Выполняются защитные меры на секциях 0,4 кВ, 6 кВ, а также 10 кВ. Далее мы постараемся разобрать, для чего нужна и как работает данная защита.

Устройство и принцип работы

Реагирующий орган системы — реле, контролирующее минимальное напряжение. Реле подключено к секционному трансформатору напряжения. В состав защиты входит также реле времени, указательное реле, сигнализирующее о срабатывании защиты, промежуточные реле.

РН-54

Назначение, которое имеет защита, реагирующая на минимальное напряжение – отключение двигателей менее ответственных механизмов для обеспечения успешного самозапуска более важных.

Чтобы понять, что это значит и для чего нужна защита, рассмотрим ее принцип действия на тепловых электростанциях. Электродвигатели механизмов каждого котлоагрегата подключены к своей секции собственных нужд станции. Каждая секция имеет рабочий ввод питания от своего трансформатора собственных нужд. Кроме этого, секции связаны между собой секционным выключателем. Нормальной считается схема, когда секции питаются от вводов трансформаторов собственных нужд, секционный выключатель при этом отключен. Представим ситуацию, когда исчезает напряжение на вводе питания секции (например, в результате повреждения трансформатора собственных нужд). Рабочий ввод отключается, срабатывает АВР (автоматика включения резерва), включающая секционный выключатель. После чего питание секции осуществляется от другого трансформатора собственных нужд, через секционный выключатель. Минимальное время работы АВР складывается из задержки в системе, контролирующей напряжение рабочего ввода, времени срабатывания промежуточных реле, времени отключения и включения выключателей рабочего и резервного вводов. За это время происходит торможение электродвигателей, питающихся от секции.

После подачи питания начинается групповой самозапуск электродвигателей, присоединенных к секции. При этом, в зависимости от глубины произошедшего торможения имеет место посадка (снижение) напряжения в большей или меньшей степени.

Примечание. При запуске котлоагрегата в штатном режиме, включение механизмов происходит последовательно с большими промежутками времени. Поэтому, при одновременном запуске (пусть даже не до конца заторможенных) механизмов, суммарное значение пускового тока существенно превышает номинальный ток питающего ТСН. Это может вызвать глубокую посадку напряжения на секции.

Защита, реагирующая на минимальное напряжение, имеет две ступени. Срабатывание первой ступени происходит, если снижение достигает отметки 0,7*Uн с выдержкой времени 0,5 с. Вторая ступень имеет уставку 0,5*Uн и время срабатывания до 9 с. Если за время бестоковой паузы произошло минимальное торможение механизмов и напряжение не достигло 70% номинального, самозапуск всех электродвигателей секции проходит успешно, котел продолжает работать.

Если напряжение снижается до 70% и ниже, на время 0,5 секунд, защитная аппаратура запускает первую ступень. Отключаются наименее важные для работы котла механизмы. Это делается для предотвращения дальнейшего снижения напряжения, чтобы дать возможность запуститься ответственным механизмам.

Вывод. Принцип работы первой ступени защиты минимального напряжения служит с целью удержать котлоагрегат в работе путем отключения механизмов, имеющих второстепенное значение.

Дальнейшее снижение напряжения (после работы 1-й ступени защиты) и достижение его уровня 50% номинала на время до 9 секунд означает, что самозапуск ответственных механизмов котла не удался. На этом этапе вопрос о работе котла уже не стоит. Включается схема работы второй ступени. Отключаются оставшиеся механизмы, подключенные к цепям защиты. Остаются только те агрегаты, отключение которых может привести к аварийной ситуации при останове котла. Например, во избежание взрыва угольной пыли в топке котла, недопустимо отключение дымососа.

Вывод. Принцип работы второй ступени защиты преследует цель вывести котел в режим безопасного гашения и останова.

Заключение

Из сказанного следует, что принцип работы защиты, реагирующей на минимальное напряжение, тесно связан с функционированием технологического оборудования, к которому она привязана. Защитная аппаратура находится на подстанции, осуществляющей питание электроустановок технологического оборудования. Таким образом, окончательно разобраться, для чего нужна защита, можно только получив хотя бы минимальное представление о том, как работает весь технологический комплекс.

Защитная аппаратура фото

Напоследок рекомендуем просмотреть полезно видео, в котором предоставлен обзор защитных аппаратов, которые применяются на сегодняшний день:

Вот мы и рассмотрели назначение и принцип работы защиты минимального напряжения. Надеемся, предоставленная информация была для вас полезной и интересной!

Защита минимального напряжения — принцип работы и назначение

Максима́льная то́ковая защи́та (МТЗ) — вид релейной защиты, действие которой связано с увеличением силы тока в защищаемой цепи при возникновении короткого замыкания на участке данной цепи. Данный вид защиты применяется практически повсеместно и является наиболее распространённым в электрических сетях.

Блок: 1/6 | Кол-во символов: 306
Источник: https://ru.wikipedia.org/wiki/%D0%9C%D0%B0%D0%BA%D1%81%D0%B8%D0%BC%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%82%D0%BE%D0%BA%D0%BE%D0%B2%D0%B0%D1%8F_%D0%B7%D0%B0%D1%89%D0%B8%D1%82%D0%B0

Назначение

ЗМН (защита минимального напряжения) используется совместно с защитами, которые осуществляют контроль сети. Эксплуатируется вкупе с устройством автоматического включения резерва (АВР). ЗМН выполняет отключение или подает соответствующий сигнал пользователю (системе) при возникновении аварий в сети потребителей, в следствии:

  • Короткого замыкания, когда происходят значительные потери электроэнергии. Возникают большие токи, напряжение резко падает.
  • Перегрузки сети. (Мощности источников электропитания не хватает или один из них вышел из строя).

Такое действие обеспечивает безопасность важных механизмов во время самозапуска, когда пусковые токи вызывают снижение напряжения. Автоматика отключает работу менее важных механизмов.

Блок: 2/11 | Кол-во символов: 742
Источник: https://ProFazu.ru/elektrosnabzhenie/bezopasnost-elektrosnabzhenie/zashhita-minimalnogo-napryazheniya.html

Сигнализация об ОЗЗ по напряжению 3Uo

Обязательная и очень важная функция в сетях с изолированной и компенсированной нейтралью.

3Uo очень надежный и стабильный признак наличия ОЗЗ, в отличии от тока 3Io.

Емкостной ток сдвинут относительно напряжения до 90 гр. включительно, поэтому когда он максимальный, то напряжение имеет минимальное значение. Все это способствует появлению неустойчивых замыканий, которые токовая селективная защита от ОЗЗ не всегда может зафиксировать.

Напряжение 3Uо при ОЗЗ всегда появляется мгновенно, а при исчезновении тока замыкания, снижается медленно. Это свойство 3Uo позволяет легко фиксировать это напряжение и строить на базе данного эффекта надежную сигнализацию.

Недостатком сигнализации ОЗЗ по 3Uо является то, что напряжение повышается на всей секции, и при этом невозможно выявить поврежденный фидер.

Блок: 2/4 | Кол-во символов: 841
Источник: https://pro-rza.ru/zashhita-i-avtomatika-transformatora-napryazheniya-6-10-kv/

Разновидности максимально-токовых защит

Максимально-токовые защиты по виду время-токовой характеристики подразделяются:

  • МТЗ с независимой от тока выдержкой временем
  • МТЗ с зависимой от тока выдержкой времени
  • МТЗ с ограниченно-зависимой от тока выдержкой времени

Применяются также комбинированный вид защиты МТЗ — максимально-токовая защита с пуском (блокировкой) от реле минимального напряжения.

МТЗ с независимой от тока выдержкой времени

МТЗ с независимой от тока выдержкой времени имеет во всём рабочем диапазоне величину выдержки времени, независимую от тока (время-токовая характеристика в виде прямой, отстоящей от оси абсцисс на величину времени выдержки tсраб; при токе, равном и меньшем тока срабатывания время-токовая характеристика скачкообразно становится равной нулю).

МТЗ с зависимой от тока выдержкой времени

МТЗ с зависимой от тока выдержкой времени имеет нелинейную обратную зависимость выдержки времени от тока (обычно время-токовая характеристика близка к гиперболе, как к кривой постоянной мощности). Применение МТЗ с зависимой от тока выдержкой времени позволяет учитывать перегрузочную способность оборудования и осуществлять т. н. «защиту от перегрузки».

МТЗ с ограниченно-зависимой от тока выдержкой времени

Характеристика МТЗ с ограниченно-зависимой от тока выдержкой времени состоит из двух частей, в первой части зависимость времени от тока гиперболическая, вторая часть — независимая (или почти независимая) время-токовая характеристика — состоит из плавно сопряжённых гиперболы и прямой. Переход из независимой в зависимую часть характеристики может происходить при малых кратностях от тока срабатывания (150 %) — т. н. «крутая» характеристика, и при больших кратностях (300–400 %) — т. н. «пологая» характеристика (обычно МТЗ с «пологой» характеристикой применяются для защиты двигателей большой мощности для лучшей отстройки от пусковых токов).

МТЗ с пуском (блокировкой) от реле минимального напряжения

Для улучшения чувствительности МТЗ и отстройки её от токов нагрузки применяется ещё одна разновидность МТЗ — максимальная токовая защита с пуском (блокировкой) от реле минимального напряжения (комбинация МТЗ и защиты минимального напряжения). Такая защита будет действовать только при повышении тока, большем или равном току уставки, сопровождающееся уменьшением напряжения в сети ниже напряжения уставки. При пуске двигателей ток в сети резко возрастает, что может привести к ложному срабатыванию защит. Для этого устанавливается реле минимального напряжения, которое не дает защитам отработать, т. к. напряжение в сети остается прежним, то и защиты соответственно не реагируют на резкое увеличение тока.

Блок: 3/6 | Кол-во символов: 2646
Источник: https://ru.wikipedia.org/wiki/%D0%9C%D0%B0%D0%BA%D1%81%D0%B8%D0%BC%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%82%D0%BE%D0%BA%D0%BE%D0%B2%D0%B0%D1%8F_%D0%B7%D0%B0%D1%89%D0%B8%D1%82%D0%B0

Защита минимального напряжения (ЗМН)

Используется в комплектах РЗА ТН 6(10) кВ как групповая защита при потере питания своей секцией. Обычно имеет две ступени, отключающие свой объем нагрузки. Чаще всего применяется на подстанциях с двигателями, например, для обеспечения самозапуска ответственных потребителей путем отключения менее ответственных.

Групповая ЗМН может не использоваться, если в терминалах защиты двигателей есть индивидуальные ЗМН, поэтому защита в терминале ТН 6(10) кВ необязательна, хотя почти всегда там реализована.

Блок: 3/4 | Кол-во символов: 539
Источник: https://pro-rza.ru/zashhita-i-avtomatika-transformatora-napryazheniya-6-10-kv/

Принцип работы ЗМН

Защита от минимального напряжения (ЗМН) имеет идентичный принцип работы во всех сферах защиты по напряжению. Для понимания, функциональность ЗМН можно объяснить на примере электрических двигателей.

Механизмы останавливаются при возникновении КЗ (короткое замыкание). После его ликвидации происходит самозапуск двигателей, подключенных к секциям или шинам. У каждой группы свое входное питание от трансформатора, либо иного источника. Пусковые токи в несколько раз превышают номинальные значения, во время запуска происходит «просадка» напряжения на секциях.

Защита ЗМН отключает незначительных потребителей участка сети — это электродвигатели не влияющие на процесс, их простой не вызовет сбой в производстве. Следовательно, уменьшается суммарный пусковой ток, напряжение в сети не имеет критичной просадки, его хватает на самозапуск главных двигателей или узлов.

Секционный (групповой) самозапуск электрических двигателей начинается после возобновления подачи питания.

Блок: 4/11 | Кол-во символов: 990
Источник: https://stroim24.info/princip-raboty-zaschity-minimal-nogo-napryazheniya/

Устройство и схема ЗМН

Самый простой вариант при организации ЗМН можно сделать на одном реле, катушка которого запитана от междуфазного напряжения. Пример такой схемы приводится ниже.

Схема ЗМН на одном реле напряжения

К сожалению, такой вариант исполнения не отличатся высокой надежностью. Если произойдет обрыв цепи напряжения, то последует ложное отключение оборудования системой ЗМН. В связи с этим данная схема защиты применяется для отключения неответственных электродвигателей и оборудования собственных нужд.

Чтобы исключить ложное срабатывание системы ЗМН практикуется применение более сложных схем защиты. В качестве примера приведем одну из них, устанавливаемую на четыре асинхронных двигателя.

Схема ЗМН для четырех электродвигателей

Как видно из приведенной схемы включения ЗМН обмотки реле KVT1-4 подключаются к междуфазным напряжениям (АВ и ВС). Для повышения надежности защиты и исключения КЗ на землю одна из фаз (в нашем случае В) подключается посредством пробивного предохранителя к заземляющей шине. На фазы А и С устанавливаются однофазные АВ (автоматические выключатели). Причем один из них оборудован электромагнитной защитой, а второй – тепловой.

Рассмотрим, как будет вести себя данное устройство релейной защиты в случаях различных повреждений цепи питания:

  • Фазное КЗ. В данном случае не последует отключение выключателей SF2 и SF3, поскольку цепь питания не обустроена глухим заземлением.
  • Междуфазное КЗ. Если замыкание происходит между фазами В и С, то это вызывает отключение выключателя SF3 по току срабатывания. Цепи обмоток KVT1-2 продолжают быть запитаны от номинального напряжения, поэтому данные реле не срабатывают. Что касается KVT3-4, то они включаются, когда произойдет КЗ. Но, как только сработает SF3, на катушки реле подается фаза А (через емкость С1).

Если произойдет замыкание между другими фазами (АС или АВ), произойдет срабатывание SF2, соответственно, напряжение на обмотки KVT1-2 будет подано через емкость C1 от фазы С, а KVT3-4 не сработают.

Как видим, в данной схеме ложное срабатывание маловероятно, для этого должно произойти замыкание всех трех фаз, что вызовет одновременное срабатывание SF2 и SF3.

Блок: 4/8 | Кол-во символов: 2153
Источник: https://www.asutpp.ru/zaschita-minimalnogo-napryazheniya.html

Автоматическая частотная разгрузка (АЧР/ЧАПВ)

Широко применяется в современных проектах в целях экономии средств на отдельный терминал АЧР (это допускается не всегда). Имеет несколько уставок АЧР и несколько очередей отключения нагрузки, чем достигается гибкое дозированное отключение потребителей для восстановления баланса активной мощности в энергосистеме.

АЧР — это противоаварийная автоматика последнего рубежа, когда все остальные меры воздействия (АЛАР, форсировка возбуждения генераторов и т,д.) не принесли нужного результата. В общем, это даже не релейная защита, а гораздо круче и важнее.

Почему эту функцию интегрируют в терминал защиты и автоматики ТН? Просто удобно измерять частоту напряжения, а не тока, причем делать это нужно в месте подключения нагрузки. Вот и получается «напряжение шин», а его измеряет именно блок ТН.

При восстановлении частоты обычно запускается алгоритм частотного АПВ, когда потребители очередями вводятся в работу.

Вот такие они, одновременно простые и сложные, защиты и автоматика трансформатора напряжения 6(10) кВ.

В следующий раз рассмотрим РЗА батареи статических конденсаторов (БСК/УКРМ).

Терминал защиты и автоматики ТН 6(10) кВ типа Алтей-БЗП.

Разработчик ООО «НПП Микропроцессорные технологии», www.i-mt.net

Алтей-БЗП содержит все перечисленные в статье защиты

Блок: 4/4 | Кол-во символов: 1323
Источник: https://pro-rza.ru/zashhita-i-avtomatika-transformatora-napryazheniya-6-10-kv/

Реализация

Традиционно МТЗ реализуются на базе электромеханических токовых реле и реле времени; иногда функция пускового органа и органа выдержки времени может быть совмещена (например в индукционных токовых реле серии РТ-80). В 1970-х годах появились реализации МТЗ на базе полупроводниковых элементов (например в некоторых моделях отечественных автоматических выключателей серий А37, ВА, «Электрон»). В настоящее время имеется тенденция реализации МТЗ на базе микропроцессоров, которые обычно помимо МТЗ выполняют также несколько функций релейной защиты и автоматики: АЧР, АПВ, АВР, дифзащиты и др.

Блок: 5/6 | Кол-во символов: 602
Источник: https://ru.wikipedia.org/wiki/%D0%9C%D0%B0%D0%BA%D1%81%D0%B8%D0%BC%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%82%D0%BE%D0%BA%D0%BE%D0%B2%D0%B0%D1%8F_%D0%B7%D0%B0%D1%89%D0%B8%D1%82%D0%B0

Пример двухступенчатой ЗМН

Для наглядности приведем схему простой двухступенчатой защиты и кратко опишем алгоритм ее работы.

Двухступенчатая ЗМН

Как видим из рисунка отключение неответственного оборудования производит реле времени Т1 (установка срабатывания 0,5 — 1,5 сек.). Его питание производится через замкнутые контакторы трех реле V1, включенных на междуфазное напряжение. При падении Uном ниже 70% от номинала, реле T1 (первая ступень) производит включение выключателя неответственного оборудования, чтобы поднять минимальное остаточное напряжение.

Вторая ступень защиты активируется промежуточным реле напряжения V2, обмотка которого рассчитана на отключение при U ≤ 0.5Uном, через промежуток времени, заданный на Т2 (как правило не более 15 секунд). Если за отведенное время не будет подключен резервный ввод (например, пуск схемы АВР электродвигателей) или не произойдет снижение напряжения, будет производиться отключение ответственного оборудования.

Блок: 6/8 | Кол-во символов: 962
Источник: https://www.asutpp.ru/zaschita-minimalnogo-napryazheniya.html

Литература

  • «Релейная защита и автоматика систем электроснабжения» Андреев В. А. М. «Высшая школа» 2007 ISBN 978-5-06-004826-1
  • «Релейная защита энергетических систем» Чернобровов Н. В., Семенов В. А. М. Энергоатомиздат 1998, ISBN 5-283-010031-7 (ошибоч.)
  • «Максимальная токовая защита» Шабад М. А. Ленинград. Энергоатомиздат. 1991
  • «Справочник по наладке электроустановок» под ред. Дорофеюка А. С. , Хечумяна А.П, М. «Энергия», 1976

Блок: 6/6 | Кол-во символов: 429
Источник: https://ru.wikipedia.org/wiki/%D0%9C%D0%B0%D0%BA%D1%81%D0%B8%D0%BC%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%82%D0%BE%D0%BA%D0%BE%D0%B2%D0%B0%D1%8F_%D0%B7%D0%B0%D1%89%D0%B8%D1%82%D0%B0

Кол-во блоков: 19 | Общее кол-во символов: 12301
Количество использованных доноров: 5
Информация по каждому донору:

Ссылка на основную публикацию