Защита от импульсных перенапряжений схема подключения

Защита квартиры или частного дома от импульсных перенапряжений

С началом грозы принято отключать дорогостоящие бытовые приборы из розетки, а ethernet кабели от компьютеров. Это нужно, чтобы защитить их от неожиданного удара молнии в ЛЭП и выхода из строя из-за перенапряжения. Но есть способ гораздо удобнее — установить на ввод в квартиру устройство защиты от импульсных перенапряжений.

Причины и последствия импульсных перенапряжений сети

Импульсные перенапряжения представляют угрозу для бытовых электроприборов. Причины данного явления делятся на 2 категории:

  1. Атмосферные перенапряжения (молнии). Разряд попадает в линию электропередач. Затем высокий потенциал следует до розеток потребителей и выводит домашнюю электронику из строя.
  2. Техногенные перенапряжения. Неисправность контура молниезащиты. Пробой изоляции между сетями высокого и низкого напряжения.

Независимо от причины, в квартирных розетках формируется разность потенциалов в несколько тысяч вольт. Импульс длится доли секунды. Но этого достаточно чтобы повредить чувствительные электронные платы, микросхемы и процессоры.

Для чего нужно УЗИП

Задача УЗИП состоит в защите электроприборов от перенапряжения. Устройство оберегает бытовую сеть от скачков тока в следующих случаях:

  • неполадки на трансформаторной подстанции и замыкания ВВ проводов на НВ линию;
  • прямое попадание грозового разряда в ЛЭП;
  • разряд молнии вблизи воздушных линий электроснабжения или жилых зданий.

Строение и принцип работы УЗИП

Принцип работы УЗИП основан на зависимости его сопротивления от приложенного к контактам напряжения. Например, если вольтаж в сети равен типичным 220 В, то сопротивление устройства составляет порядка 1-100 Мом. Если напряжение возрастает до критического уровня, то УЗИП резко снижает сопротивление до единиц ом и шунтирует квартиру от чрезмерно высоких токов.

Внутри устройства имеется полупроводниковый элемент — варистор. Именно он за несколько микросекунд сбрасывает сопротивление до минимальных значений.

Принцип действия УЗИП

Дополнительная информация. Варистор — это круглая, светло-синяя или черная радиодеталь с двумя ножками. Ее диаметр составляет от 7 до 30 мм. Варистор часто встречается в бытовой технике. Он включается между фазным и нулевым проводами электроприбора или впаивается в его плату. В случае с домашней техникой варистор также служит для защиты от перенапряжения, только не всей квартиры, а конкретного бытового прибора, в котором он установлен.

Виды УЗИП

Существующие УЗИП отличаются по быстроте срабатывания. Различия объясняются неодинаковыми конструкциями и принципами работы приборов. Поэтому принято выделять 3 вида устройств молниезащиты:

  1. Искровые промежутки (разрядники). Представляют собой воздушный зазор между электродами.
  2. Варисторные ограничители перенапряжения (ОПН). Полупроводниковые устройства. Резко снижают сопротивления при возрастании напряжения. Встречаются в УЗИП, устанавливаемых в квартирные щитки, на платах бытовой техники и на опорах ЛЭП.
  3. Комбинированные устройства. Сочетают в себе оба из перечисленных типов устройств.

Искровые промежутки (разрядники)

Наиболее старый и простой тип защиты от перенапряжения. Как правило, разрядники используются в трансформаторных подстанциях и распределительных устройствах. На таких объектах возможны резкие скачки напряжения при коммутационных процессах.

Имеется 2 электрода. Один подключается к заземлению. Второй к защищаемой линии. Пока разность потенциалов между электродами находится в пределах нормы, разрядник обладает большим сопротивлением воздуха. Как только напряжение между электродами превышает заданный уровень, происходит пробой воздушного промежутка (пролетает искра). Разрядник на доли секунды сбрасывает сопротивление.

УЗИП на основе искровых разрядников

Напряжение срабатывания разрядника регулируется расстоянием между электродами. Чем оно больше, тем выше вольтаж, при котором произойдет пробой воздушного промежутка.

Важно! Если долго проходить в помещении в синтетической куртке, а потом прикоснуться к чему-то металлическому, то между пальцем и железным предметом пролетит искра. Произойдет пробой воздушного промежутка между заряженной от трения курткой и железным предметом. Разрядники работают по аналогичному принципу.

Варисторные ограничители перенапряжения

Низковольтный вариант данного устройства применяется в квартирных электрощитах. Для этого на корпусе предусмотрено стандартное крепление под DIN-рейку. Прибор работает с напряжениями 220/380 В и предохраняет от перенапряжения отдельную квартиру или трехфазного потребителя.

Высоковольтный вариант устанавливается на линии 10 кВ и выше. Обладает сравнительно большими размерами и мощным керамическим корпусом белого или коричневого цвета. Данный ограничитель импульсных перенапряжений еще называют вентильным разрядником (не путать с искровым промежутком).

Ограничитель импульсных напряжений на варисторах

Комбинированные устройства

Комбинированные УЗИП сочетают достоинства от вышеперечисленных защитных устройств. Основные из них таковы:

  1. Низкое напряжение срабатывания варисторных ОПН. Как следствие, высокая чувствительность к самым незначительным превышениям напряжения.
  2. Большая рассеиваемая мощность искровых разрядников. Некоторые модели способны пропускать токи в десятки килоампер.

Классы УЗИП

Различные модели УЗИП отличаются по типу защищаемого потребителя, месту установки и техническим требованиям. Поэтому их принято разделять на 3 класса.

Класс УЗИПНазначение устройстваТехнические требованияПредельный импульсный ток, кА
1-й (B)Защита от прямых ударов молнии, бросков напряжения при КЗ.Необходима защита от прямого прикосновения человека к частям устройства. Отсутствиериска возгорания УЗИП при его неисправности или КЗ в системе электроснабжения.От 0,5 до 50 кА при импульсном токе в течение 350 мкС.
2-й (C)Для защиты ЛЭП и подстанций от перенапряжений при переключениях. Как дополнительные мерызащиты при ударе молнии.Аналогичные1 классу. Защита от прямого прикосновения. Отсутствие риска возгорания при КЗв сети или неисправности защитного устройства.5 кА при импульсе в 20 мкС.
3-й (D)Для гашения остаточных сетевых помех и скачков напряжения.Защита от низковольтного перенапряжения между фазой и нулем. От прямого прикосновения ивозгорания.До 1,5 кА при 20 мкС

Маркировка защитного устройства

Для правильного выбора и установки устройства необходимо ознакомиться с его маркировкой. Она представлена в буквенно-цифровом виде и находится на корпусе УЗИП. Расшифровка обозначений приведена ниже.

  • L/N — винтовые клеммы для подключения кабелей защищаемой сети;
  • символ «земля» — клемма для подключения нулевого защитного проводника;
  • зеленый флажок на корпусе — указывает на исправность прибора;
  • Un — номинальное рабочее напряжение защищаемой сети;
  • Umax — предельное допустимое напряжение;
  • 50 Гц — частота тока;
  • In — номинал разрядного тока;
  • Imax — предельный разрядный ток, который способны выдержать устройство;
  • Uр — напряжение срабатывания УЗИП.

Схемы подключения

Для подключения защитного устройства недостаточно ознакомления с его характеристиками. Дополнительно следует учесть и параметры питающей сети. В странах СНГ наиболее распространены такие ее виды:

  • однофазная, TN-S;
  • однофазная, TN-C;
  • трехфазная, TN-S;
  • трехфазная, TN-C;

УЗИП с однофазным питанием и системе TN-S

На картинке ниже представлена схема подключения. УЗИП включается после вводного автоматического выключателя. Как фазный, так и нулевой провод, на защитное устройство поступает с автомата. Заземляющий же проводник идет с PE клеммника.

Подключение однофазного УЗИП для TN-S

УЗИП с однофазным питанием по системе TN-C

Применяется однополюсной прибор. Заземляющий проводник отсутствует. Поэтому устройство защиты от перенапряжений подключается между фазным и нулевым. При критическом скачке напряжения в L проводе лишний ток, минуя квартиру, потечет в N провод.

Подключение УЗИП по TN-C

УЗИП с трехфазным питанием и по системе TN-S

Устройство защиты устанавливается после вводного автомата. Если поставить его после счетчика, то в случае удара молнии дорогой прибор учета выйдет из строя. Все 3 фазы поступают на УЗИП в соответствии с маркировкой его клемм. При таком подключении стабильность напряжения контролируется не только между фазой и землей, но и между отдельными фазами.

Трехфазное УЗИП по системе TN-S

УЗИП с трехфазным питанием по системе TN-C

В трехфазной сети желательно использовать модульное устройство защиты на 3 полюса. Но при необходимости допустимо воспользоваться и 3 однофазными УЗИП. Независимо от комплектации уровень напряжения будет контролироваться между всеми фазными проводниками и нулем.

УЗИП для трехфазной сети TN-C

Автоматы или предохранители перед УЗИП

На вводе в любую квартиру в обязательном порядке монтируется устройство защиты от КЗ или перегрузки по току. Раньше применялись пробки (плавкие вставки). Сейчас в ходу автоматические выключатели.

УЗИП монтируется после этих устройств. При превышении напряжения оно замыкает свои контакты. Далее возникает огромный ток короткого замыкания. Если перед УЗИП стоит плавкая вставка, то она перегорит. Ее необходимо будет заменить новой. Если автоматический выключатель, то он сработает, и его достаточно будет просто включить.

УЗИП подключается после автоматов защиты

В контексте ОИН специалисты рекомендуют именно плавки вставки. Объясняется это простотой их устройства и меньшими рисками перекрытия высоким напряжениям. То есть если под превышенным потенциалом окажется автомат, то есть риск, что внутри него образуется дуга, и он не выполнит защитную функцию. С плавким предохранителем такая опасность минимальна. Однако они обладают меньшей быстротой действия чем автоматы.

Важно! Не следует ремонтировать пробки и изготавливать так называемые «жучки». Это быстро, дешево и просто, но периодически приводит к серьезным последствиям. В идеале лучше иметь пробки на запас или установить автоматические выключатели.

Ошибки монтажа УЗИП

При правильной установке защитное устройство гарантирует безопасность бытовых электроприборов. Распространенные примеры ошибок при монтаже УЗИП следующие:

  1. Монтаж УЗИП в щиток с неисправным заземлением. Для работы устройство требует надежной земли. Поэтому перед установкой необходимо убедиться в исправности заземления.
  2. Неправильное подключение с нарушением схемы. Корректно подключить УЗИП может только человек, разбирающийся в электрике. В случае затруднений следует обратиться к типовым схемам в технической документации на устройство.
  3. Применение защитного аппарата, не подходящего по классу. При ударе молнии такое устройство в лучшем случае выйдет из строя. В худшем оно пропустит высокое напряжение в квартирную электрическую сеть.

В подавляющем большинстве случаев УЗИП защитит ваш дом от импульсных перенапряжений. Они возникают в результате ударов молнии вблизи ЛЭП или аварий на трансформаторных подстанциях. Подобные вещи невозможно предсказать заранее, поэтому защита от перенапряжений пойдет на пользу любому электрощиту.

Независимо от того, приобретается УЗИП для частного дома или квартиры, следует обратить внимание на его класс. Другие важные параметры — это минимальное напряжение срабатывания, предельный импульсный ток КЗ и количество защищаемых фаз. Не менее значимо правильно выбрать схему подключения прибора к сети.

Ограничитель импульсных перенапряжений и схема установки разрядника

Ограничитель перенапряжений это часто недооцениваемый, но очень важный элемент домашнего электрощитка. Этот элемент рекомендован к установке производителями электрооборудования, в то время как среди самих электриков мнения разделены. Давайте разберёмся с этим делом. Наиболее частые вопросы про ограничитель выглядит следующим образом: Каковы классы разрядников? Из чего он состоит и как работает? Как подключить ограничитель перенапряжений? Действительно ли он защищает электрические устройства?

Классы защиты ограничителей

В области напряжения ниже 1000 В ограничители делятся на 4 класса, обозначенные буквами алфавита: A, B, C и D.

  1. Ограничитель класса А не используется в бытовых установках, а применяется для защиты линий электропередач.
  2. Протектор класса B используется для защиты от высоковольтовых скачков напряжения, например, вызванных ударом молнии к линии электропередач.
  3. Ограничитель класса C предназначен для защиты от перенапряжений со слегка более низкими значениями напряжения в сети. Защитные устройства класса B и C обычно устанавливаются в бытовых распределительных устройствах.
  4. Протектор класса D используется для прямой защиты выбранных электроустройств, чувствительных к импульсным помехам и всплескам в 220 В сети. Он монтируется в распределительном щите, за розеткой в электрической коробке или непосредственно в защищаемом устройстве.

Ограничитель импульсных перенапряжений и схема установки разрядника

Каждое устройство защиты ограничивает электрический потенциал только определенным уровнем. Чем ближе оборудование к А классу – тем более высокая мощность. Например:

  • Класс A уменьшит уровень напряжения до 6 кВ,
  • Класс B уменьшит уровень напряжения до 2,5 кВ,
  • Класс C уменьшит уровень напряжения до 1,5 кВ,
  • Класс D уменьшит уровень напряжения до 0,8 кВ.

Поэтому ограничители отдельных классов следует применять каскадно, постепенно снижая уровень предельного напряжения. То есть если одно распределительное устройство в доме – используем защитные устройства класса как B, так и C (есть сразу 2 в 1 защитные устройства B + C).

Если здание многоэтажное, в главном распределительном щитке должны использоваться защитные устройства класса B, а ограничители класса C следует использовать в распределительных щитках в отдельных квартирах.

Если подключенное к розетке устройство чувствительно к скачкам напряжения, можем также использовать ограничители класса D. К ограничителям класса А у нас нет доступа, это забота энергетической компании.

Поскольку рассматривать будем домашнюю проводку, статья будет посвящена защитным устройствам класса B и класса C (типа I и II).

Обозначение на принципиальных схемах

Основные символы, используемые при обозначении разрядников перенапряжения, следующие:

Ограничитель импульсных перенапряжений и схема установки разрядника

  1. Общее обозначение разрядника
  2. Разрядник трубчатый
  3. Разрядник вентильный и магнитовентильный
  4. ОПН

Установка ограничителя перенапряжений

Стандартный разрядник B или C (возможно, B + C) состоит из двух компонентов:

  1. Основа ограничителя
  2. Сменная вставка с защитным элементом

Ограничитель импульсных перенапряжений и схема установки разрядника

Основа

Основание защитного устройства установлено на DIN-рейке TS35. Оно имеет два хомута. Подключите провод фазы ( L ) или нейтральный ( N ) на котором может появиться слишком большой электрический потенциал. С другой стороны подсоедините защитный провод PE, который подключен к защитной линии распределительного устройства.

Ограничитель импульсных перенапряжений и схема установки разрядника

Защитный проводник должен иметь минимальное поперечное сечение 4 мм2, но не повредит взять ещё больше. В конце концов есть вероятность, что будет течь очень высокий ток.

Ограничитель импульсных перенапряжений и схема установки разрядника

Есть 3 контакта под терминалом PE. По стандарту в комплект входит вилка, которая вставлена в нужное место и позволяет соединять провода. Благодаря этим зажимам есть возможность удаленного уведомления в случае повреждения вставки или ее перегорания. Этот сигнал может быть подключен, например, к входу блока управления сигнализацией (смотрите схему). В этом случае панель управления будет проинформирована о повреждении вставки размыканием электрической цепи между красным и зеленым проводами.

Читайте также:  Ванны и натурального и искусственного камня, материалы и выбор

Ограничитель импульсных перенапряжений и схема установки разрядника

Вставка

Вставка содержит все наиболее важные элементы, благодаря которым защитник правильно функционирует:

  • Класс B (тип I) – основным элементом является просто искровой промежуток.
  • Класс C (тип II) – здесь деталь варистор является основным элементом.

Как работает защитник от перенапряжений

Защитой обеспечиваются устройства, питаемые от шнуров сети 220V, подключенных к разряднику в распределительной коробке. Это касается как фазных, так и нейтральных проводников (в зависимости от выбранного типа защиты).

Общее правило заключается в том, что на одной стороне защитного устройства соединяем фазные проводники и, возможно, нейтральный проводник, а с другой стороны – защитный провод.

Когда напряжение в системе в норме, сопротивление между проводами очень велико, порядка нескольких ГигаОм. Благодаря этому ток не течет через разрядник.

Когда происходит скачок напряжения в сети, ток начинает протекать через ограничитель на землю.

В защитных устройствах класса B основным элементом является искровой промежуток. При нормальной работе сопротивление его очень велико. В случае искрового промежутка это сопротивление является гигантским, поскольку искровой промежуток это фактически разрыв цепи. Когда молния ударяет в элемент электрической установки напрямую, сопротивление искрового промежутка падает почти до нуля благодаря электрической дуге. Из-за появления очень большого электрического потенциала в искровом промежутке между ранее разделенными элементами создается электрическая дуга.

Благодаря этому, например, фазовый провод, в котором имеется большой всплеск напряжения и защитный провод, создают короткое замыкание и большой ток протекает прямо на землю, минуя внутреннюю электрическую установку. После разряда искровой промежуток возвращается в нормальное состояние – то есть разрывает цепь.

Ограничитель класса C имеет внутри варистор. Варистор представляет собой специфический резистор, который обладает очень высоким сопротивлением при низком электрическом потенциале. Если в системе происходит скачок напряжения из-за разряда, его сопротивление быстро уменьшается вызывая протекание тока на землю и аналогичную ситуацию, как в случае искрового промежутка.

Ограничитель импульсных перенапряжений и схема установки разрядника

Разница между классом B и классом C заключается в том, что последний способен ограничивать всплески напряжения с меньшим потенциалом, чем прямой удар молнии. Недостатком этого решения является довольно быстрый износ варисторов.

Главным в ограничителях перенапряжений, независимо от используемого класса, является установка заземления с очень хорошими параметрами, то есть с очень низким электрическим сопротивлением. Если это сопротивление слишком велико – ток перенапряжения (вызванный ударом молнии) вместо протектора может протекать через электрическую систему и оставить на пути сгоревшее оборудование, включенное в данный момент к розеткам 220 вольт.

Схема подключения ограничителя к сети

Как подключить ограничитель к домашнему щитку? Начнем с основ. У нас есть однофазная сеть и одномодульный разрядник. Мы хотим защитить им фазовый провод. Тип сети – TN-S.

Ограничитель импульсных перенапряжений и схема установки разрядника

Подключаем фазный проводник питания непосредственно к разряднику и подключаем разрядник с другой стороны к клеммной колодке PE.

Ограничитель импульсных перенапряжений и схема установки разрядника

Но в этом домашнем коммутаторе больше ничего, кроме импульсного ограничителя. Добавим недостающие элементы.

Ограничитель импульсных перенапряжений и схема установки разрядника

Как видите, установка ограничителя перенапряжений не влияет на дальнейшую организацию компонентов в домашнем коммутационном щитке. Соединение устройства остаточного тока и автоматических выключателей осуществляется так же.

Ограничитель импульсных перенапряжений и схема установки разрядника

Вообще в распределительных устройствах разрядники перенапряжения класса B, C или B + C устанавливаются перед автоматическим выключателем (или автоматическими выключателями) и предохранителями токовой защиты. Но ограничитель является первым элементом, лежащим в основе защиты дома или квартиры.

Трехфазная установка

В трехфазной схеме увеличивается ширина ограничителя и количество защищаемых соединений. Однако принцип функционирования ограничителя остается неизменным. Наиболее часто используемые трехслойные системные защитные устройства, работающие в системе 4 + 0, что означает присоединение к разряднику следующих линий:

  • 3-фазные провода
  • 1 нейтральный провод

Каждый из проводов подлежащих защите имеет равные права, то есть возможные перенапряжения устраняются путем подачи тока на защитную установку и, как результат, на землю.

Ограничитель импульсных перенапряжений и схема установки разрядника

Конечно для установок TN-C (установка без отдельного защитного провода) можно приобрести защитные устройства только с 3 защищаемыми разъемами. Затем с нижней стороны подключите ограничитель к полосе PEN (нейтральная защита).

Ограничитель импульсных перенапряжений и схема установки разрядника

Безопасность и эффективность ограничителя

Каждый производитель рекомендует использовать дополнительный предохранитель защищающий сеть, в случае повреждения разрядника и короткого замыкания в фазовом проводе с защитным проводником.

В бытовых установках это не часто практикуется, потому что защита от короткого замыкания существует в виде прерывателя или предохранителя, а его малый номинальный ток безопасно защищает сеть от сбоев.

Параметры ограничителя перенапряжений

Перед тем как пойти в магазин и купить это устройство, нужно знать следующее:

  1. Количество модулей (терминалов) – зависит от типа вашей сети. 1 модуль можно купить когда есть однофазная система TN-C. 3 модуля, когда установка находится в сети TN-C трехфазной и 4 модуля когда сеть является трехфазной в TN-S или TT.
  2. Класс (тип) – можно выбирать между классами B, C или B + C. Если не уверены что перед вашей квартирой используется ограничитель типа B, стоит выбрать решение B + C. В противном случае ограничителя типа C будет достаточно.
  3. Номинальное напряжение, в котором работает ограничитель.
  4. Uc – рабочее напряжение протектора, то есть максимальный уровень напряжения который приведет к срабатыванию.
  5. In – номинальный ток ограничителя, то есть какой ток в случае короткого замыкания может протекать через разрядник.
  6. Imax – ток, который разрядник способен принимать во время атмосферного разряда. Обратите внимание, что оба значения (In = 30 000A и Imax = 60 000A) будут относительно большими по отношению к току при нормальной работе приборов в доме.
  7. Up – напряжение до которого уменьшается в случае разрыва. Например если потенциал достигает напряжения 10 000 В в случае всплеска – итоговое значение снижается до 150.

Ограничитель импульсных перенапряжений и схема установки разрядника

Стоит ли применять ограничитель в сети

Каждый электрик размышляет стоит ли вообще покупать разрядник. Ведь это не самый дешевый элемент электромонтажа. Теоретически, во время ремонта или строительства проводки с нуля в квартире или доме расходы 3000 рублей (в случае 4-модульного протектора) – капля в океане расходов. На практике у защитного блока не всегда будет возможность доказать, что он нужен. Даже если он сработает, снижение напряжения может не всегда защитить чувствительные электронные устройства (лучше обстоит дело с защитой класса D).

Тем не менее редакция 2Схемы.ру настоятельно рекомендует оснастить сеть этим оборудованием. Если он защитит даже одно ценное устройство, расходы сразу окупятся и даже с избытком!

НАЖМИТЕ ТУТ И ОТКРОЙТЕ КОММЕНТАРИИ

Если роль заземления и нулевого проводника играет общий кабель, то в такой схеме устанавливается простейшее одноблоковое УЗИП. Подключается он следующим образом: фазная жила, подключенная ко входу защитного устройства – выходной кабель, соединенный с общим защитным проводником – защищаемые электроприборы и оборудование.

Что такое ограничители импульсных перенапряжений

В промышленных и бытовых электрических сетях устанавливается оборудование, которое работает в заданных пределах силы тока и напряжения. Однако на питающих трансформаторных подстанциях, мощных силовых электродвигателях приходится периодически менять режимы работы. Переходной процесс характеризуется резким импульсным повышением электрических параметров сети. Наиболее опасными являются атмосферные разряды в виде молний, где импульсный скачок перенапряжения достигает критической величины способной вывести из строя электрическое оборудование. Для предотвращения таких аварийных ситуаций используется ограничитель импульсных напряжений.

Принцип работы

В импульсных переходных процессах изменение напряжения происходит значительно быстрее, чем силы тока. Поэтому классические всем известные защитные автоматы по току здесь будут неэффективны. Наличие в составе ограничителя с полупроводниковым элементом, имеющим нелинейную вольтамперную характеристику, обеспечивает приборы электрической сети защитой от высокого импульса напряжения.

график

Как видно из графика, при номинальном значении напряжения сопротивление полупроводника (его называют варистором) достаточно большое и ток, проходящий через него практически нулевой (зона 1). При действии на варистор высоковольтных импульсов (зона 2) сопротивление его резко уменьшается, приближаясь к почти нулевому значению (зона 3). В таком варианте варистор ограничителя будет выступать в качестве шунтирующего соединения воспринимающего на себя всю токовую нагрузку, которая направляется на заземляющий контур.

Конструкция

Кроме основного элемента — варистора с нелинейными характеристиками, ограничитель перенапряжения отличает специальный корпус из фарфора или полимера. Сам варистор изготавливается в большинстве случаев из вилитовых дисков (из особого керамического состава с основой в виде оксидов цинка со специальными добавками). Диски покрываются изолирующей обмазкой и устанавливаются в корпусе.

В зависимости от условий эксплуатации ограничители перенапряжения могут иметь различные исполнения.

На изображении цифрами обозначены следующие конструктивные элементы:

  • 1 — корпус;
  • 2 — предохранитель, срабатывающий после прохождения импульса напряжения, с параметрами силы тока короткого замыкания;
  • 3 — варисторный модуль, легко сменяемый без отключения базового элемента;
  • 4 — индикатор, показывающий текущий ресурс работы устройства;
  • 5 — насечки на контактных зажимах, увеличивающие плотность и площадь соприкосновения с целью предотвращения оплавления проводов в результате нагрева.

Технические характеристики

Помимо конструктивного исполнения не менее важным фактором при выборе необходимого ограничителя (импульсных) перенапряжений (ОПН) служат его следующие основные технические параметры.

  • Максимальное рабочее напряжение, которое действует на ОПН неограниченно долго, не нарушая его работоспособности.
  • Максимальное напряжение, действующее на ОПН в течение заданного производителем времени не вызывая в нем никаких повреждений.
  • При приложении к концам ОПН рабочего напряжения измеряется ток, проходящий через изоляцию. Этот параметр называется током утечки. Величина его в исправном состоянии ограничителя стремится к нулю.
  • Разрядный ток — его величина определяет принадлежность ограничителя перенапряжения в защите от различных факторов вызывающих скачок напряжения: грозовые, электромагнитные, коммутационные.
  • Способность выдерживать работу в аварийном режиме сохраняя целостность всех конструктивных элементов.

Классификация ограничителей (импульсных) перенапряжений определяется государственными стандартами. В нормативных документах обозначаются основные требования к устройствам защиты в зависимости от характера источника. Различаются следующие группы защиты от перенапряжения:

  • от замыканий на высокой стороне низковольтных сетей;
  • от воздействия грозовых разрядов и скачков напряжений, вызванных переключением промышленных электроустановок;
  • от возможных перенапряжений, вызванных электромагнитными факторами.

В зависимости от принадлежности к конкретному виду решаемого вопроса ограничители импульсных перенапряжений могут отличаться друг от друга такими параметрами.

  • Класс напряжения. Ограничители защищают цепи рабочее напряжение которых варьируется от меньше, чем 1 кВольт до значительно больших значений. Существуют, например, ОПН на классы напряжения 0.38 кВольт и 0.66 кВольт, ОПН на классы напряжения 3, 6, 10 кВольт и другие.
  • Материал изоляционной рубашки. Наибольшее распространение получили фарфор и полимеры.

Керамические ОПН обладают хорошей устойчивостью к солнечному свету, имеют достаточную механическую прочность, что расширяет возможности эксплуатации в разных условиях. Ограничивают применение лишь большие весовые характеристики и характер распространения осколков при разрыве с точки зрения безопасности.

Керамические ОПН

Полимерные ОПН успешно конкурируют с фарфоровыми. При многократно меньших весовых характеристиках и практически безопасным в случае разрушения избыточным давлением, они нисколько не уступают по диэлектрическим свойствам. К недостаткам относится способность к покрытию поверхности пылью, что повышает ток утечки и вызывает пробой изоляции. В эксплуатации они больше подвержены влиянию солнечной радиации и колебаниям температур внешней среды, чем фарфоровые ограничители (импульсных) перенапряжений.

  • Класс защищенности. От герметичного изготовления корпуса ОПН зависит возможность его установки на открытом воздухе или внутри помещения, что собственно определяет этот показатель.
  • Одноколонковые ОПН. Состоят из одного модульного блока варисторов с различным набором дисков из защитного полупроводникового элемента, рассчитанных на все классы напряжений.
  • Многоколонковые ОПН. Состоят из нескольких модульных блоков. Отличаются большей надежностью, чем одноколонковые конструкции.

Что означает аббревиатура УЗИП

УЗИП расшифровывается, как устройство защиты от импульсных перенапряжений. В перечень входящих в УЗИП приборов кроме ограничителей перенапряжения входят уже устаревающие вентильные и искровые разрядники. Последние применяются в сетях высокого напряжения (ЛЭП).

Применение в качестве материала варисторов полупроводников, позволило сделать габариты УЗИП настолько компактными, что стало возможным применение в качестве защиты от импульса напряжения в частных домах и квартирах.

Как подключить УЗИПы в домашних условиях

Правила устройства энергоустановок регламентируют обязательную установку УЗИП в домах, где электроснабжение производится проводами воздушных линий и с относительно длительным периодом наличия гроз. На рынке присутствует большое количество моделей УЗИП таких, например, как ограничители импульсных напряжений ОИН 1, ОПС 1, ОПН — РВ и много других, габариты которых позволяют разместить их во вводном щитке электроснабжения частного дома.

ОИН 1

Электроснабжение дома может быть организовано по однофазной или трехфазной схемах. Различными могут быть и организация системы заземления домашней электросети.

На представленном ниже изображении — схема подключения УЗИП в однофазную электрическую схему. Система заземления с двумя нулевыми проводами: один выступает в качестве нейтрального проводника соединенного с землей, а второй используется как защитный провод.

схема подключения УЗИП в однофазную электрическую схему

  • фаза — обозначена черным проводом;
  • нулевой — обозначен синим проводом;
  • зеленый — защитный заземляющий провод.

На следующем изображении представлена схема подключения УЗИП в трехфазную электрическую схему. Конструкция устройства защиты и счетчика выполнены для трехфазной сети. Заземление оборудовано по тому же принципу, что и в примере с подключением в однофазную цепь.

схема подключения УЗИП в трехфазную электрическую схему

  • черный провод — первая из трех фаз;
  • красный провод — вторая из трех фаз;
  • коричневый — третья фаза;
  • синий — нулевой заземляющий провод;
  • зеленый — защитный провод заземления.

Рекомендации по монтажу

Если следовать рекомендациям по установке и подключению ограничителя импульсных перенапряжений, устройство будет гарантировать безопасную работу бытового оборудования.

  • Важно иметь очень надежное заземление. Защита с ненадежным контуром заземления даже при не очень большом скачке импульса напряжения приведет к аварийной ситуации в виде сгоревших электроприборов и самого щитка.
  • Необходимо соблюдать соответствие класса защищенности УЗИП с местом установки щитка. Если щиток находится на улице, а устройство предназначено для работы в помещении то в лучшем случае оно выйдет из строя, в худшем нанесет вред домашней электросети.
  • Для обеспечение надежной защиты в некоторых случаях требуется установка УЗИП разных классов защищенности.
  • Не всякое защитное устройство подходит к конкретному виду заземления домашней электросети. Следует внимательно изучить техническую документацию приобретаемого устройства, чтобы не выбрасывать на ветер деньги на достаточно дорогое устройство.
  • Важно правильно подключить схему, без нарушений. В случае отсутствия навыков электрика не стоит браться за работу. Квалифицированный специалист выполнит ее правильно, без особых затруднений.
Читайте также:  Все правила утепления откосов пластиковых окон в 8 этапов

Удары молнии, обрывы линий электропередач или аварии на трансформаторных подстанциях предсказать невозможно. Установка ОПН защитит от непредвиденных неприятностей.

УЗИП — что это такое, описание и схемы подключения в частном доме

Перенапряжение — это превышение максимального показателя напряжения для той или иной сети. Под импульсным перенапряжением понимается резкий скачок напряжения между фазой и землей, который занимает долю секунды. Такой перепад напряжения опасен не только для линии, но и для подключенных к ней электроприборов. Чтобы не допустить подобной ситуации, используется устройство защиты от импульсных перенапряжений.

УЗИП - что это такое, описание и схемы подключения в частном доме

Что такое УЗИП и для чего оно нужно?

УЗИП — это устройство защиты от импульсных перенапряжений, которое обеспечивает защиту электроустановок до 1 кВ. Устройство защищает от перенапряжений в электросети, а также от грозовых воздействий посредством отвода импульсов тока на землю.

УЗИП применяют только в низковольтных силовых распределительных системах. Данное устройство подходит как для промышленных предприятий, так и для жилых строений.

УЗИП бывает двух типов:

  • ОПС — ограничитель перенапряжений сети;
  • ОИН — ограничитель импульсных напряжений.

Принцип действия и устройство

УЗИП - что это такое, описание и схемы подключения в частном доме

Принцип работы УЗИП заключается в применении варисторов — нелинейный элемент в виде полупроводникового резистора сопротивления от приложенного напряжения.

УЗИП имеет два вида защиты:

  • Несимметричный (синфазный) — при перенапряжении устройство направляет импульсы на землю (фаза — земля и нейтраль – земля);
  • Симметричный (дифференциальный) — при перенапряжении энергия направляется на другой активный проводник (фаза — фаза или фаза – нейтраль).

Чтобы лучше понять принцип работы УЗИП приведем небольшой пример.

Нормальное напряжение цепи 220 В, а при возникновении импульса в этой самой цепи напряжение резко поднимается, например, при ударе молнии. При резком скачке напряжения, в УЗИП уменьшается сопротивление, что приводит к короткому замыканию, которое в свою очередь приводит к срабатыванию автоматического выключателя и в последствии к отключению самой цепи. Таким образом обеспечивается защита электрооборудования от резких перепадов напряжения, не допуская протекания через него импульса высокого напряжения.

Разновидности УЗИП

УЗИП - что это такое, описание и схемы подключения в частном доме

Устройства защиты от импульсных перенапряжений бывают с одним и двумя вводами, и подразделяются на:

  • Коммутирующие;
  • Ограничивающие;
  • Комбинированные.

Коммутирующие защитные аппараты

Характерной особенностью коммутирующих устройств является высокое сопротивление, которое при возникновении сильного импульса в напряжении мгновенно падает до нуля. Принцип работы коммутирующих устройств основывается на разрядниках.

Ограничители сетевого перенапряжения (ОПН)

УЗИП - что это такое, описание и схемы подключения в частном доме

Для ограничителя сетевых напряжений также характерно высокое сопротивление. Его отличие от коммутирующего аппарата только в том, что снижение сопротивления происходит постепенно. ОПН основывается на работе варистора (резистора), который используется в его конструкции. Сопротивление варистора находится в нелинейной зависимости от воздействующего на него напряжения. При резком увеличении напряжения происходит также резкое увеличение силы тока, который проходит непосредственно через варистор и таким образом сглаживаются электрические импульсы, после чего ограничитель сетевого напряжения возвращается в первоначальное состояние.

Комбинированные УЗИП

УЗИП комбинированного типа объединяют в себе разрядники и варисторы, и могут выполнять как функцию разрядника так и ограничителя.

Классы УЗИП

УЗИП - что это такое, описание и схемы подключения в частном доме

Существует всего три класса устройств по степени защиты:

  • Устройство I класса (категория перенапряжения IV) — защищает систему от прямых ударов молнии, и устанавливается в главном распределительном щите или в вводно-распределительном устройстве (ВРУ). Обязательно нужно использовать данное устройство, если здание находится на открытой местности и окружено множеством высоких деревьев, что увеличивает риск грозового воздействия.
  • Устройство II класса (категория перенапряжения III) — используется как дополнение к устройству I класса для защиты сети от коммутационного воздействия, т.е. от внутреннего перенапряжения сети. Устанавливается в распределительном щите.
  • Устройство III класса (категория перенапряжения II) — применяется для защиты от остаточных атмосферных и коммутационных перенапряжений, а также для устранения высокочастотных помех прошедших через устройство II класса. Проводится монтаж как в обычные розетки или разветвительные коробки, так и в сами электроприборы, которые необходимо обезопасить.

Классификация по степени разряда тока:

  • Класс В — разрядки воздушные или же газовые с током разряда от 45 до 60 кА. Устанавливаются на вводе в здание в главном щите или в вводно-распределительном устройстве.
  • Класс С — варисторные модули с токами разряда порядка 40 кА. Устанавливаются в дополнительных щитах.
  • Классы С и D применяются в тандеме в случае, если необходим подземный кабельный ввод.

ВАЖНО! Расстояние между УЗИП должно быть не меньше 10 метров по длине проводки.

Как выбрать УЗИП?

Первое, что нужно сделать при выборе УЗИП это определить систему заземления, которая используется в здании.

Система заземления бывает трех типов:

  • TN-S с одной фазой;
  • TN-S с тремя фазами;
  • TN-C или TN-C-S с тремя фазами.

Не менее важно обратить на выдерживаемую температуру при приобретении устройства. Большинство УЗИП рассчитано на работу при температуре до -25. Если в вашем регионе очень холодный климат, и зимы бывают суровыми, тогда электрощит не должен находиться на улице, иначе устройство выйдет из строя.

УЗИП - что это такое, описание и схемы подключения в частном доме

При выборе УЗИП также необходимо учесть следующие факторы:

  • Значимость защищаемого оборудования;
  • Риск воздействия на объект: местность (город или пригород, равнинная открытая местность), зона с особым риском (деревья, горы, водоем), зона особых воздействий (молниеотвод на расстоянии от здания менее 50 метров, который представляет опасность).

В связи с положением, при котором возникла необходимость установки УЗИП, выбирается подходящий класс (I, II, III).

Также важно учитывать выдерживаемое устройством напряжение. Для устройств I-го класса этот показатель не превышает 4 кВ. Устройство II класса выдерживает уровень напряжения до 2,5 кВ, а устройство III класса до 1,5 кВ.

Еще одним важным параметром при выборе УЗИП является максимальное длительное рабочее напряжение — действующее значение переменного или постоянного тока, которое длительно подаётся на УЗИП. Этот параметр должен быть равен номинальному напряжению в сети. Подробно можно ознакомиться с информацией в стандарте МЭК 61643 — 1, приложение 1.

При подключении УЗИП для защиты оборудования важно учитывать его номинальный постоянный или переменный ток, который может поддаваться нагрузке.

Как подключить УЗИП в частном доме?

Установка УЗИП производится в зависимости от показателя напряжения: 220В (одна фаза) и 380В (три фазы).

Схема подключения может быть направлена на бесперебойность или на безопасность, нужно определить приоритеты. В первом случае может временно отключиться молниезащиты для того, чтобы не допустить перебоя в снабжении потребителей. Во втором же случае недопустимо отключение молниезащиты, даже на несколько секунд, но возможно полное отключение снабжения.

Схема подключения в однофазной сети системы заземления TN-S

При использовании однофазной сети TN-S к УЗИП нужно подключить фазный, нулевой рабочий и нулевой защитный проводник. Фаза и ноль сначала подключаются к соответствующим клеммам, а затем шлейфом к линии оборудования. К защитному проводнику подключается заземляющий проводник. УЗИП устанавливается сразу после вводного автомата. Для облегчения процесса подключения все контакты на устройстве обозначены, поэтому сложностей не должно возникнуть.

УЗИП - что это такое, описание и схемы подключения в частном доме

Пояснение к схеме: А, В, С – фазы электрической сети, N – рабочий нулевой проводник, PE – защитный нулевой проводник.

СПРАВКА. Рекомендуется использовать предохранители для дополнительной защиты УЗИП, которые ставятся непосредственно на само устройство.

Схема подключения в трехфазной сети системы заземления TN-S

Отличительной особенностью трехфазной сети TN-S от однофазной является то, что от источника питания исходит пять проводников, три фазы, рабочий нулевой и защитный нулевой проводники. К клеммам подключается три фазы и нулевой провод. Пятый защитный проводник подключается к корпусу электроприбора и земле, то есть служит некой перемычкой.

УЗИП - что это такое, описание и схемы подключения в частном доме

Схема подключения в трехфазной сети системы заземления TN-C

В системе подключения заземления TN-C рабочий и защитный проводник объединены в один провод (PEN), это и является главным отличием от заземления TN-S.

Система TN-C является более простой и уже довольно устаревшей, и распространена в устаревшем жилом фонде. По современным нормам применяется система заземления TN-C-S, в которой находятся по отдельности нулевой рабочий и нулевой защитный проводники.

Переход на более новую систему необходим для того, чтобы избежать поражения электрическим током обслуживающего персонала, и ситуаций с возникновений пожара. Ну и конечно же в системе TN-C-S лучше защита от резких импульсных перенапряжений.

УЗИП - что это такое, описание и схемы подключения в частном доме

Во всех трех вариантах подключения при перенапряжении ток направляется на землю через кабель заземления или же через общий защитный провод, что не дает импульсу навредить всей линии и оборудованию.

Ошибки при подключении

1. Установка УЗИП в электрощитовую с плохим контуром заземления.

При допущении подобной ошибки можно лишиться не только всех электроприборов, но и самой щитовой при первом попадании молнии, так как от защиты с плохим контуром заземления не будет никакого толку, и соответственно никакой защиты.

2. Неправильно выбранное УЗИП, которое не подходит под используемую систему заземления.

Перед покупкой устройства обязательно узнайте какая система заземления используется в вашем доме, а при покупке тщательно ознакомьтесь с его техдокументацией во избежание ошибок.

3. Использование УЗИП не того класса.

Как уже разбирали выше, есть 3 класса устройств защиты от импульсного перенапряжения. Каждый класс соответствует определенной щитовой, и должен устанавливаться согласно правилам и нормам.

4. Установка УЗИП только одного класса.

Часто бывает недостаточно установки УЗИП одного класса для надежной защиты.

5. Перепутан класс устройства и место его назначения.

Бывает и такое, что приборы класса B ставятся в распределительный щит квартиры, приборы класса С в ВРУ здания, а приборы класса D перед электронной аппаратурой.

УЗИП для частного дома

Во время грозы довольно часто возникают токовые импульсы, способные полностью вывести из строя приборы, оборудование, электронную аппаратуру, установленные внутри помещений. Для того чтобы защититься от негативных воздействий потребуется УЗИП для частного дома, представляющий собой устройство защиты от импульсных перенапряжений. Эти приборы применяются в низковольтных сетях, напряжением до 1 кВ. Область применения защитных устройств охватывает не только промышленные предприятия, но и частные жилые объекты.

Назначение УЗИП

До недавних пор основными средствами защит от перепадов напряжения считались УЗМ – устройства защитные многофункциональные. Они надежно защищали оборудование при наступлении аварийных ситуаций. Эти приборы массово устанавливаются в квартире, а также владельцами частных домов, и ни у кого не возникает сомнений в их целесообразности. С УЗИП наблюдается совершенно другая ситуация. Многие хозяева просто не понимают, что такое УЗИП и для чего нужен, ведь на объекте уже установлены УЗМ?

УЗИП обеспечивает защиту не от какого-то незначительного повышения напряжения с 220 до 380 вольт, а от мгновенного импульса, достигающего нескольких киловольт. При таких высоких значениях реле напряжения становится просто бесполезным, поскольку оно выйдет из строя вместе с другим оборудованием.

С другой стороны, УЗИП в силу своей специфики, не способно защитить сеть от перепадов в десятки или сотни вольт. Таким образом, не существует альтернативы УЗИП или реле напряжения, каждое из этих устройств используется отдельно, функционально дополняя друг друга и повышая тем самым степень защищенности объекта.

Импульсное высокое перенапряжение возникает даже при ударах молнии на значительном расстоянии от воздушной линии. Удар в ЛЭП на опоре может произойти очень далеко от дома, а импульс с высокой вероятность все равно проникает в домашнюю сеть. Общая протяженность кабелей и проводов в современных домах может достигать нескольких километров. Принимая на себя грозовой импульс, они получают огромное наведенное напряжение, с которым сможет справиться только УЗИП. После его срабатывания сеть оказывается обесточенной, и вся электроника остается в целости и сохранности.

Конструкция

Конструктивные особенности того или иного прибора зависят от степени защиты, которую он обеспечивает. Поэтому в качестве основы могут использоваться варисторы или разрядники. В обычном режиме эти устройства выступают в качестве байпаса, создавая резервный путь для электрического тока на случай аварийной ситуации. С этой целью УЗИП через шунт соединяется с заземлением.

УЗИП для частного дома

Чаще всего для защиты объектов и электрики используются варисторные устройства. Они оборудуются тепловой защитой, обеспечивающей нормальную работу приборов в течение продолжительного времени. Постоянное воздействие токов с высокими амплитудами приводит к износу варистора и снижению его показателя – максимально допустимого рабочего напряжения. Увеличенные токи утечки, проходящие через корпус, нередко приводят к его перегреву и деформации. Пластик расплавляется и фазные клеммы оказываются коротко замкнутыми с металлической ДИН-рейкой.

Читайте также:  Аммиак применение в медицине

Поэтому вместе с варисторами устанавливается тепловая защита или термический размыкатель. Их простейшая конструкция состоит из контакта с пружиной, припаянного к выводу УЗИП, который, в свою очередь, связан с пожарной сигнализацией. В некоторых приборах используются контакты, подключаемые к автономной сигнализации, срабатывающей при неисправностях устройства и передающей сигнал в места получения и обработки информации.

Иногда под воздействием огромных токов тепловая защита может отреагировать с некоторой задержкой, что приводит к образованию дуги и расплавлению корпуса. Поэтому, во избежание подобных ситуаций, последовательно с УЗИП устанавливаются тепловые предохранители с необходимыми характеристиками. Они устойчивы к высоким импульсным перенапряжениям и отличаются очень быстрым срабатыванием. Подобная защита обеспечивает своевременное полное или частичное отключение электрической сети.

Принцип работы

Все защитные устройства УЗИП разделяются на две основные категории:

  • Ограничители перенапряжений сети – ОПС.
  • Ограничители импульсных напряжений – ОИН.

Эти приборы обладают двумя видами защиты:

  • Несимметричная или синфазная защита. При возникновении перенапряжения все импульсы перенаправляются на землю по маршрутам фаза-земля и нейтраль-земля.
  • Симметричная или дифференциальная защита. В случае перенапряжений направление энергии изменяется в сторону другого активного проводника: фаза-фаза или фаза-ноль.

Принцип работы УЗИП заключается в использовании в нем варистора, представляющего собой полупроводниковый резистор с нелинейными характеристиками. В обычном состоянии сети в 220 V он свободно пропускает через себя электрический ток. Когда при ударе молнии в цепи возникает импульс, происходит резкий скачок напряжения. Под его воздействием происходит снижение сопротивление в УЗИП и возникает запланированное короткое замыкание.

В результате, срабатывает автоматический выключатель, и вся цепь оказывается отключенной. Резкий перепад напряжения не затрагивает электрооборудование и через него не будут протекать высокие токи.

В зависимости от конструкции, все УЗИП разделяются на несколько видов, для каждого из которых предусмотрена собственная схема подключения:

  • Коммутирующие. Они отличаются высоким сопротивлением, которое впоследствии под действием сильных импульсов мгновенно снижается до нуля. Основой этих устройств служат разрядники.
  • Ограничивающие приборы – ОПН. Они также отличаются высоким сопротивлением. В отличие от предыдущих устройств, его снижение происходит постепенно. Резкий рост напряжения приводит к такому же резкому росту силы тока, проходящего непосредственно через варистор. За счет этого происходит сглаживание электрических импульсов, а прибор возвращается в исходное положение.
  • Комбинированные устройства соединяют в себе свойства варисторов и разрядников, выполняя функции обоих устройств.

Классификация и характеристики

Как выбрать УЗИП для частного дома? Все защитные устройства классифицируются по своим функциональным возможностям и, соответственно, отличаются собственными техническими характеристиками.

По классам защиты эти приборы условно подразделяются:

  • 1-й класс (В). Защищают от ударов молний в систему электроснабжения, нейтрализуют атмосферные и коммутационные перенапряжения. Устанавливаются в щитках ВРУ на вводе или внутри главного распределительного щита. Обязательны к установке в отдельных зданиях, расположенных на открытой местности, на объектах, оборудованных молниеотводом или находящихся возле высоких деревьев. Величина номинального разрядного тока для таких устройств составляет от 30 до 60 кА.
  • 2-й класс (С). Используются для защиты сетей от остаточных явлений, связанных с атмосферными и коммутационными перенапряжениями, которые смогли преодолеть прибор 1-го класса. Монтируются в местные распределительные щитки, например, на вводе в квартиру. Номинальное значение разрядного тока находится в пределах 20-40 кА.
  • 3-й класс (D). Непосредственно защищают электронную аппаратуру от перенапряжений и помех, прошедших сквозь устройство 2-го класса. Монтируются в распределительных коробках, розетках или в самом оборудовании. Типичным примером является сетевой фильтр, в который подключаются компьютеры. Номинальный разрядный ток для таких приборов – 5-10 кА.

Перечень основных характеристик УЗИП:

  • Величина номинального и максимального сетевого напряжения, на которое рассчитано конкретное защитное устройство.
  • Значение рабочей частоты тока, необходимой для нормального функционирования УЗИП.
  • Подобрать показатель номинального разрядного тока, многократно пропускаемого устройством без потерь работоспособности.
  • Величина максимального разрядного тока, однократно пропускаемого через УЗИП без выхода из строя защитного устройства.
  • Значение напряжения защиты. Означает степень максимального падения напряжения под действием импульса (кВ). Указывает на способность УЗИП путем подбора к ограничению перенапряжения.

Схема подключения

Защитные устройства подключаются по разным схемам в зависимости от сетевого напряжения 220 и 380 V. Такие сети могут использоваться в однофазной сети или трехфазной. Основным приоритетом схемы является ее бесперебойная или безопасная работа. В первом случае допускается временное отключение от молниезащиты во избежание перебоев в электроснабжении. Второй вариант не допускает такого отключения даже на короткое время, возможно лишь полностью отключить подачу электричества.

Чаще всего подключение УЗИП выполняется в однофазных сетях с заземляющей системой TN-S или ТТ. В этом случае к защитному устройству выполняется подключение фазного, а также двух нулевых проводников – рабочего и защитного. Вначале фазный провод и ноль подключаются к своим клеммам, после чего через общий шлейф они выводятся на линию с оборудованием.

Защитный проводник соединяется с заземляющим проводом. Монтаж УЗИП в однофазной сети выполняется сразу же за вводным автоматом. Все контакты прибора имеют свои обозначения, поэтому проблем с подключением обычно не возникает.

Представленная схема подключения используется для трехфазной сети, подключенной к заземляющей системе по варианту TN-S или ТТ. От однофазной она отличается наличием пяти проводников, идущих от источника питания. В их число входят три фазных и два нулевых проводника – рабочий и защитный. Три фазы и ноль подключаются к клеммам, а защитных проводник соединяется с корпусом электроприбора и землей, выполняя функцию своеобразной перемычки.

При использовании системы заземления по схеме TN-C, существует еще одна возможность произвести подключение УЗИП в трехфазной сети. Основным отличием является соединение рабочего и защитного проводников в общий провод PEN. Данная схема подключения считается устаревшей и применяется в домах старой постройки, где отсутствует заземление и заземляющие проводники.

В случае возникновения перенапряжения в каждом из трех вариантов высокий ток направляется в сторону земля при помощи монтажа заземляющего или общего защитного провода, не позволяя импульсу причинить вред оборудованию.

Ошибки при монтаже и подключении

Эффективность работы УЗИП во многом зависит от его правильного выбора, установки и подключения. Поэтому, перед тем как подключить УЗИП нужно учитывать следующие факторы:

  • Нельзя устанавливать прибор в щитке с некачественным заземляющим контуром. Первый же удар молнии разрушит не только все оборудование, но и саму щитовую. Высоким токам просто некуда будет уходить.
  • Неправильный выбор УЗИП в частном доме, когда устройство несовместимо с действующей системой заземления. Необходимо внимательно изучить техническую документацию перед покупкой.
  • Установка УЗИП не с тем классом защиты.
  • Не следует ограничиваться одним устройством. В некоторых случаях могут понадобиться 2 или даже 3 прибора, которые нужно правильно выбирать.
  • Класс УЗИП перепутан с местом его установки. Защитная схема подключения серьезно нарушается и становится неэффективной.

В любом случае, перед оборудованием защитной системы с помощью этих устройств, следует проконсультироваться с опытными специалистами.

Устройство защиты от импульсных перенапряжений (УЗИП) для частного дома

Бытовой УЗИП

Импульсным перенапряжением называется кратковременное резкое возрастание напряжения в электрической сети. Несмотря на то, что длится этот скачок совсем недолго (доли секунды), он чрезвычайно опасен как для линии, так и для подключенных к ней потребителей энергии. Чтобы не допустить повреждения кабеля и электрических приборов, используют устройства защиты от импульсных перенапряжений. В этом материале мы поговорим о том, что представляют собой эти приборы, каких видов они бывают, а также рассмотрим, как подключаются УЗИП для частного дома.

Причины возникновения импульсного перенапряжения

ИП может происходить как по технологическим, так и по природным причинам. В первом случае резкий перепад разности потенциалов происходит, когда на трансформаторной подстанции, откуда идет питание конкретной линии, возникает коммутационная перегрузка. Импульсное перенапряжение, вызванное природными причинами, случается, когда во время грозы мощный разряд бьет в молниезащиту сооружения или линию электрической передачи. Независимо от того, чем вызван скачок напряжения, он может быть очень опасен для домашней электросети, поэтому для эффективной защиты от него требуется подключить УЗИП.

Молния ударила в молниеотвод

Для чего нужно подключение УЗИП?

Для того чтобы защитить электрическую сеть и подключаемые к ней приборы от мощных импульсов тока и резких перепадов напряжения, устанавливается устройство для защиты линии и оборудования от импульсных напряжений (сокращенное обозначение – УЗИП). Оно включает в себя один или несколько нелинейных элементов. Подключение внутренних компонентов защитного устройства может производиться как в определенной комбинации, так и различными способами (фаза-фаза, фаза-земля, фаза-ноль, ноль-земля). В соответствии с требованиями ПУЭ установка УЗИП для защиты сети частного дома или другого отдельного здания производится только после вводного автомата.

Наглядно про УЗИП на видео:

Разновидности УЗИП

Эти аппараты могут иметь один или два ввода. Включение как одновводных, как и двухвводных устройств всегда производится параллельно цепи, защиту которой они обеспечивают. В соответствии с типом нелинейного элемента УЗИП подразделяются на:

  • Коммутирующие.
  • Ограничивающие (ограничитель сетевого напряжения).
  • Комбинированные.

Разновидности УЗИП

Коммутирующие защитные аппараты

Для коммутирующих устройств, находящихся в обычном рабочем режиме, характерно высокое сопротивление. Когда происходит резкое увеличение напряжения в электрической сети, сопротивление прибора мгновенно падает до минимального значения. Основой коммутирующих аппаратов защиты сети являются разрядники.

Ограничители сетевого перенапряжения (ОПН)

Ограничитель импульсных перенапряжений также характеризуется высоким сопротивлением, плавно снижающимся по ходу возрастания напряжения и повышения силы электротока. Постепенное снижение сопротивления – это отличительная черта ограничивающих УЗИП. Ограничитель сетевого перенапряжения (ОПН) имеет в своей конструкции варистор (так называется резистор, величина сопротивления которого находится в нелинейной зависимости от воздействующего на него напряжения). Когда параметр напряжения становится больше порогового значения, происходит резкое увеличение силы тока, проходящего через варистор. После сглаживания электрического импульса, вызванного коммутационной перегрузкой или ударом молнии, ограничитель сетевого напряжения (ОПН) возвращается в обычное состояние.

Ограничитель сетевого напряжения

Комбинированные УЗИП

Устройства комбинированного типа сочетают в себе возможности коммутационных и ограничивающих аппаратов. Они могут как коммутировать разность потенциалов, так и ограничивать ее возрастание. При необходимости комбинированные приборы могут выполнять одновременно обе этих задачи.

Классы устройств защиты от ИП

Существует 3 класса аппаратов защиты линии от перенапряжения:

Устройства I класса устанавливаются в распределительном щите или вводном шкафу и позволяют обеспечить защиту сети от импульсного перенапряжения, когда электрический разряд во время грозы попадает в ЛЭП или молниезащиту.

Приборы II класса обеспечивают дополнительную защиту электрической линии от повреждений в результате удара молнии. Устанавливают их и в том случае, когда необходимо защитить сеть от импульсных скачков напряжения, вызванных коммутацией. Их монтируют после устройств I класса.

Рассказ про УЗИП от специалистов компании ABB на видео:

Аппараты класса I+II обеспечивают защиту отдельных жилых домов. Монтаж этих приборов производится неподалеку от электрического оборудования. Они играют роль последнего барьера, сглаживающего остаточное перенапряжение, которое, как правило, имеет незначительную величину. Устройства этого класса выпускаются в виде специализированных электророзеток или вилок.

Разновидности УЗИП

Одновременная установка устройств I, II и III класса гарантирует трехступенчатую защиту электрической линии от импульсных скачков напряжения.

Как подключить УЗИП в частном доме?

Защитные устройства могут включаться в бытовые электрические сети (с одной фазой и рабочим напряжением 220В) и в токоведущие линии промышленных объектов (три фазы, 380В). Исходя из этого, полная схема подключения УЗИП предусматривает воздействие соответствующего показателя напряжения.

Если роль заземления и нулевого проводника играет общий кабель, то в такой схеме устанавливается простейшее одноблоковое УЗИП. Подключается он следующим образом: фазная жила, подключенная ко входу защитного устройства – выходной кабель, соединенный с общим защитным проводником – защищаемые электроприборы и оборудование.

В соответствии с требованиями современной электротехнической документации нулевой и заземляющий проводники объединяться не должны. Исходя из этого, в новых домах для защиты цепи от скачков напряжения применяется двухмодульный аппарат, имеющий три отдельных клеммы: фаза, нейтраль и заземление.

Подключение УЗИП – схема в линии TNC и TNS

В таком случае включение устройства в схему производится по другому принципу: фаза и нулевой кабель идут на соответствующие клеммы УЗИП, а затем шлейфом на подсоединенное к линии оборудование. Заземляющий проводник также подключается к своей клемме защитного прибора.

В каждом из описанных случаев чрезмерный ток, возникающий при перенапряжении, уходит в землю по кабелю заземления или общему защитному проводу, не оказывая воздействия на линию и подсоединенное к ней оборудование.

Ответы на вопросы про УЗИП на видео:

Заключение

В этой статье мы рассказали о том, что же такое УЗИП, каких типов бывают эти устройства и как они классифицируются, а также разобрались с тем, как производится их подключение к защищаемой цепи. Напоследок нужно сказать, что использование этого прибора, в отличие от УЗО, в линии электропитания частного дома обязательным не является. Включение его в сеть в каждом отдельно взятом случае требует учета индивидуальной заземляющей схемы, а также размещения ГЗШ и вводного автомата. Поэтому перед покупкой и установкой УЗИП настоятельно рекомендуем воспользоваться консультацией опытного электрика.

Ссылка на основную публикацию