Бетон жаростойкий, понятие огнестойкости бетона

Бетон жаростойкий, понятие огнестойкости бетона

Общие технические условия

Castable refractories. General specifications

Дата введения 2019-04-01

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0-2015 “Межгосударственная система стандартизации. Основные положения” и ГОСТ 1.2-2015 “Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены”

Сведения о стандарте

1 РАЗРАБОТАН Обществом с ограниченной ответственностью “Научно-технический центр “Огнеупоры” (ООО “НТЦ “Огнеупоры”)

2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 28 сентября 2018 г. N 112-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Минэкономики Республики Армения

Госстандарт Республики Беларусь

4 Приказом Федерального агентства по техническому регулированию и метрологии от 9 ноября 2018 г. N 979-ст межгосударственный стандарт ГОСТ 34470-2018 введен в действие в качестве национального стандарта Российской Федерации с 1 апреля 2019 г.

5 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе “Национальные стандарты”, а текст изменений и поправок – в ежемесячном информационном указателе “Национальные стандарты”. В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе “Национальные стандарты”. Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования – на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

1 Область применения

Настоящий стандарт распространяется на огнеупорные бетоны, предназначенные для изготовления огнеупорных изделий и для изготовления и ремонта футеровок различных тепловых агрегатов, и устанавливает общие технические требования к ним.

Примечание – К огнеупорным бетонам относят огнеупорные бетонные смеси и массы, предназначенные для изготовления огнеупорных бетонных изделий и для изготовления и ремонта огнеупорных футеровок, а также огнеупорные бетонные изделия и огнеупорные футеровки на разных стадиях затвердевания (схватывания).

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ 12.1.005-88 Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны

ГОСТ 12.3.009-76 Система стандартов безопасности труда. Работы погрузочно-разгрузочные. Общие требования безопасности

ГОСТ 12.4.010-75 Система стандартов безопасности труда. Средства индивидуальной защиты. Рукавицы специальные. Технические условия

ГОСТ 12.4.028-76 Система стандартов безопасности труда. Респираторы ШБ-1 “Лепесток”. Технические условия

ГОСТ 12.4.253-2013 (EN 166:2002) Система стандартов безопасности труда. Средства индивидуальной защиты глаз. Общие технические требования

ГОСТ 17.0.0.01-76 Система стандартов в области охраны природы и улучшения использования природных ресурсов. Основные положения

ГОСТ 17.2.3.02-2014 Правила установления допустимых выбросов загрязняющих веществ промышленными предприятиями

ГОСТ 2409-2014 Огнеупоры. Метод определения кажущейся плотности, открытой и общей пористости, водопоглощения

ГОСТ 2642.0-2014 Огнеупоры и огнеупорное сырье. Общие требования к методам анализа

ГОСТ 2642.1-2016 Огнеупоры и огнеупорное сырье. Методы определения содержания влаги

ГОСТ 2642.2-2014 Огнеупоры и огнеупорное сырье. Метод определения относительного изменения массы при прокаливании

ГОСТ 2642.3-2014 Огнеупоры и огнеупорное сырье. Методы определения оксида кремния (IV)

ГОСТ 2642.4-2016 Огнеупоры и огнеупорное сырье. Методы определения оксида алюминия

ГОСТ 2642.5-2016 Огнеупоры и огнеупорное сырье. Методы определения оксида железа (III)

ГОСТ 2642.6-2017 Огнеупоры и огнеупорное сырье. Методы определения оксида титана (IV)

ГОСТ 2642.7-2017 Огнеупоры и огнеупорное сырье. Методы определения оксида кальция

ГОСТ 2642.8-2017 Огнеупоры и огнеупорное сырье. Методы определения оксида магния

ГОСТ 2642.9-2018 Огнеупоры и огнеупорное сырье. Методы определения оксида хрома (III)

ГОСТ 2642.10-2018 Огнеупоры и огнеупорное сырье. Методы определения оксида фосфора (V)

ГОСТ 2642.11-2018 Огнеупоры и огнеупорное сырье. Метод определения оксидов калия и натрия

ГОСТ 2642.12-2018 Огнеупоры и огнеупорное сырье. Методы определения оксида марганца (II)

ГОСТ 2642.13-2018 Огнеупоры и огнеупорное сырье. Метод определения оксида бора

ГОСТ 2642.14-86 Огнеупоры и огнеупорное сырье. Метод определения двуокиси циркония

ГОСТ 2991-85 Ящики дощатые неразборные для грузов массой до 500 кг. Общие технические условия

ГОСТ 4069-69 Огнеупоры и огнеупорное сырье. Методы определения огнеупорности

ГОСТ 4070-2014 Изделия огнеупорные. Метод определения температуры деформации под нагрузкой

ГОСТ 4071.1-94 (ИСО 10059-1-92) Изделия огнеупорные с общей пористостью менее 45%. Метод определения предела прочности при сжатии при комнатной температуре

ГОСТ 4071.2-94 (ИСО 8895-86) Изделия огнеупорные теплоизоляционные. Метод определения предела прочности при сжатии при комнатной температуре

ГОСТ 5402.1-2000 (ИСО 2478-87) Изделия огнеупорные с общей пористостью менее 45%. Метод определения остаточных изменений размеров при нагреве

ГОСТ 5402.2-2000 (ИСО 2477-87) Изделия огнеупорные теплоизоляционные. Метод определения остаточных изменений размеров при нагреве

ГОСТ 5959-80 Ящики из листовых древесных материалов неразборные для грузов массой до 200 кг. Общие технические условия

ГОСТ 7875.0-2018 Изделия огнеупорные. Общие требования к методам определения термической стойкости

ГОСТ 7875.1-2018 Изделия огнеупорные. Метод определения термической стойкости на кирпичах

ГОСТ 7875.2-2018 Изделия огнеупорные. Метод определения термической стойкости на образцах

ГОСТ 7933-89 Картон для потребительской тары. Общие технические условия

ГОСТ 8179-98 (ИСО 5022-79) Изделия огнеупорные. Отбор образцов и приемочные испытания

ГОСТ 10180-2012 Бетоны. Методы определения прочности по контрольным образцам

ГОСТ 10198-91 Ящики деревянные для грузов массой св. 200 до 20000 кг. Общие технические условия

ГОСТ 12170-85 Огнеупоры. Стационарный метод измерения теплопроводности

ГОСТ 12730.1-78 Бетоны. Методы определения плотности

ГОСТ 24468-80 (ИСО 5016-86) Изделия огнеупорные. Метод определения кажущейся плотности и общей пористости теплоизоляционных изделий

ГОСТ 24717-2004 Огнеупоры и огнеупорное сырье. Маркировка, упаковка, транспортирование и хранение

ГОСТ 26381-84 Поддоны плоские одноразового использования. Общие технические условия

ГОСТ 26565-85 Огнеупоры неформованные. Методы отбора и подготовки проб

ГОСТ 27707-2007 Огнеупоры неформованные. Методы определения зернового состава

ГОСТ 28584-90 Огнеупоры и огнеупорное сырье. Метод определения влаги

ГОСТ 30762-2001 Изделия огнеупорные. Методы измерений геометрических размеров, дефектов формы и поверхностей

ГОСТ 33757-2016 Поддоны плоские деревянные. Технические условия

Примечание – При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования – на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю “Национальные стандарты”, который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя “Национальные стандарты” за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

3.1 огнеупорный бетон: Огнеупор в твердом, жидком или сыпучем состоянии, состоящий из огнеупорного заполнителя, вяжущего и, при необходимости, жидкости затворения и добавок.

3.1.1 огнеупорный керамобетон: Разновидность огнеупорного бетона, в котором вместо огнеупорного цемента используют высококонцентрированную вяжущую суспензию (ВКВС).

3.2 дефлокулирующая добавка (дефлокулянт): Поверхностно-активная добавка, предотвращающая слипание мелких частиц в огнеупорной бетонной массе и обеспечивающая ее текучесть.

3.3 огнеупорная бетонная смесь: Огнеупорная смесь, состоящая из огнеупорного заполнителя различных фракций, огнеупорного вяжущего и, при необходимости, добавок, требующая введения жидкости.

3.3.1 плотная огнеупорная бетонная смесь: Огнеупорная бетонная смесь, предназначенная для изготовления плотных огнеупорных бетонных изделий и футеровок.

3.3.2 теплоизоляционная огнеупорная бетонная смесь: Огнеупорная бетонная смесь, предназначенная для изготовления теплоизоляционных огнеупорных бетонных изделий и футеровок, как правило, с пористым или полым огнеупорным заполнителем.

3.4 огнеупорная бетонная масса: Огнеупорная масса, состоящая из огнеупорного заполнителя, огнеупорного вяжущего, жидкости и, при необходимости, добавок, готовая к использованию.

3.4.1 плотная огнеупорная бетонная масса: Огнеупорная бетонная масса, предназначенная для изготовления плотных огнеупорных бетонных изделий и футеровок, готовая к использованию.

Как сделать огнеупорный (жаростойкий, жаропрочный) бетон своими руками — состав

Огнеупорный бетон – жаропрочный материал, который способен на протяжении достаточно длительного времени не менять своих характеристик под воздействием огня и высоких температур. Такой бетон применяется в самых разных сферах, но всегда там, где есть риск воспламенения или необходимость обеспечить стойкость конструкции к огню, повышенной температуре.

Уровень огнестойкости материала определяется такими параметрами, как: скорость горючести, теплопередачи при переменных условиях (вентиляция, температура огня, наличие/отсутствие источников топлива в здании). Бетонные стены из обыкновенного материала способны продержаться до 4 часов. Горит бетон без выделения токсинов, жидких частиц, дыма.

В частном строительстве зданий жаропрочный бетон используется редко – лишь отдельных конструкций. Свойства такого раствора актуальны при возведении туннельных аварийных выходов, конструкций инфраструктуры, производств, специальных сооружений для спасения членов правительства и т.д.

приготовление жаростойкого бетона

Общие сведения: материалы и характеристики жаростойких бетонов

Жаростойкий бетон – особый вид бетонного материала, который способен долго выдерживать воздействие температуры в диапазоне +1580-1770С максимум без потери эксплуатационных и механических свойств (огнеупорный бетон, в свою очередь, выдерживает недолговременный нагрев и до температуры максимум +200С).

Бетон используют в строительстве жилых и промышленных объектов. Из огнеупорного и жаропрочного бетона делают мангалы, домашние отопительные печи, сауны, бани, дымовые трубы, камины и т.д.

После достижения предельной температуры и по прошествии определенного времени жаростойкие бетоны начинают высыхать, покрываться трещинами, разрушаться.

  • Высокий уровень прочности
  • Надежная термоизоляция
  • Усиление эксплуатационных характеристик в процессе работы
  • Простота приготовления (дополнительный обжиг не нужен)
  • Уменьшение затрат времени, финансов, труда

Жаростойкий бетон может быть конструкционным и теплоизоляционным. По структуре бывает легким поризованным, плотным, ячеистым.

огнеупорный бетон

Состав плотных огнестойких растворов

Плотный тяжелый жаростойкий бетон (состав может быть разным) обычно используется в создании огнестойких конструкций, а также в виде жаростойкой футеровки в тех или иных тепловых агрегатах: на производствах химической промышленной сферы, рекуператоров доменных печей, в специальных печах обжига кирпича, в процессе строительства дымовых труб.

Благодаря применению тяжелых смесей удается существенно сократить время на выполнение строительства и ремонта тепловых агрегатов, заметно понизить себестоимость, уменьшить объем трудозатрат.

Вяжущие

Жаростойкие бетоны производятся в соответствии с ГОСТ 20910 90. Данный документ предполагает возможность использования различных вяжущих в приготовлении раствора.

  • Жидкое стекло
  • Глиноземистый (сюда можно включить и высокоглиноземистый) цемент
  • Шлакопортландцемент со специальными микронаполнителями
  • Портландцемент с обязательным включением в состав микронаполнителя (тонкомолотой добавки)

В нейтральной/щелочной среде обычно применяют смесь на шлакопортландцементе и портландцементе. Для газовой кислой среды подойдет жидкое стекло. Для водородной, фосфорной, углеродной среды лучше выбирать глиноземистые и высокоглиноземистые цементы.

Возможно добавление минеральных компонентов (доменный шлак в гранулах, бой шамотного/магнезитового кирпича, лессовидный суглинок, андезит и т.д.) с целью улучшения структуры и упрочнения состава.

Заполнители

Огнеупорные бетоны предполагают введение в состав не только специальных вяжущих, но и правильных заполнителей, которые должны равномерно расширяться и таким образом выдерживать воздействие огня и высоких температур. Обыкновенные заполнители гарантируют стойкость при максимум +200С, дальше они становятся менее прочными и при +600С полностью деформируются.

Когда готовят огнеупорный бетон, состав предполагает в качестве заполнителей использование материала, который не будет разрушаться/размягчаться при высоких температурах, а также не станет причиной появления высоких напряжений во внутренней структуре монолита.

примерный состав растворов на портландцементе

  • +600 – 800С: горные породы (диабаз, андезит, базальт), пористые материалы из горных вулканических пород, это могут быть доменные гранулированные шлаки, бой кирпича, искусственные пористые структуры (вспученный перлит, керамзит, подойдет шлаковая пемза и т.д.).
  • +1200 – 1700С: добавляют дробленые огнеупорные материалы – хромит, шамотный кирпич, магнезит, часто выбирают корунд, обожженный каолин.
  • Возможно добавление специальных материалов, полученных посредством обжига при высокой температуре смеси огнеупорной глины и магнезита – алюмосиликаты, которые отличаются минимальной деформацией, хорошей огнеупорностью.

Технические требования

Марка огнестойкого бетона должна включать такие параметры:

  • Тип бетона: жаростойкий обозначается буквами BR
  • Вяжущее: алюминатный (А), портландцемент (Р), силикаты (S)
  • Класс прочности на сжатие/растяжение – B1-В40
  • Температура эксплуатации – ИЗ-И18
Читайте также:  Диван с оттоманкой, его преимущества, советы по размещению

Пример: жаростойкий бетон на базе портландцемента с прочностью В20, способный выдерживать +1200С, будет обозначаться BR Р В20 И12.

Что касается плотности, то материал с показателем 1100 кг/м3 применяют в качестве теплоизоляции для ограждающих конструкций ненагруженного типа, >1400 – для возведения ограждающих несущих конструкций общественных/жилых зданий. По уровню предельной температуры бетоны могут принадлежать к одному из 18 классов: И13-И18 используют лишь для ненесущих конструкций.

прочностные свойства жаростойких бетонов

Если плотность бетона составляет 1500 кг/м3, он должен обладать водонепроницаемостью в диапазоне W-W8. Морозостойкость находится на уровне F-F75. Остаточная прочность и показатель температуры деформации при воздействии механической нагрузки напрямую зависят от вида вяжущих и точной температуры нагрева.

Что касается класса прочности, то для напряженных жаростойких конструкций показатель должен быть минимум В30, без нагрузки – допускается минимум В12.5.

Основные виды тяжелого огнестойкого бетона

Состав огнеупорного бетона может быть разным, что зависит от нужных характеристик, используемых материалов и их пропорций. Тяжелых бетонов существует несколько видов, ниже рассмотрены основные из них.

Бетон на портландцементе и шлакопортландцементе

Это самый распространенный вид жаростойких бетонов, отличающийся невысокой стоимостью, отработанной технологией приготовления и использования, хорошей прочностью. Обычно такой бетон выбирают для сооружения дымовых труб, тепловых агрегатов, создания огнестойких конструкций атомных электростанций и т.д.

Класс прочности должен быть в диапазоне В15-В40. В приготовлении используют цемент М400 и выше, добавляют лишь активные минеральные вещества (топливная зола, шамот, доменный шлак и т.д.). Наиболее прочный бетон получается с включением в состав шамотной добавки тонкого помола.

В шлакопортландцементе предусмотрена технологией добавка металлургического доменного шлака, поэтому смесь может применяться для замеса бетонов с предполагаемым воздействием температуры не больше +700С.

На глиноземистом алюминатном цементе

Из этих веществ готовят бетоны с классом термостойкости в диапазоне И8-И18. Основным минеральным составляющим такого цемента является моноалюминат кальция, высокоглиноземистого – диалюминат кальция. Если не вводить в состав никаких дополнительных добавок, бетон выдержит максимум +1300С, если включить заполнитель из корунда и оксида алюминия, можно повысить температурный режим до +1650С и больше.

изделия из жаропрочного бетона

  • Минимальная термическая усадка, небольшое линейное расширение в процессе нагрева
  • Высокий показатель механической прочности
  • Сохранение стабильного состояния при резких перепадах температуры
  • Теплопроводность минимальная
  • Уже через сутки после заливки конструкции могут эксплуатироваться

Жидкое стекло в качестве вяжущего жаростойких бетонов

До того, как приготовить жаропрочный бетон из жидкого стекла, необходимо тщательно изучить состав смеси. Применяют калиевые/натриевые составы, благодаря которым огнеупорные бетоны могут эксплуатироваться при температуре +800-1600С.

По структуре жидкое стекло может быть высокомодульным (обозначается буквой В), среднемодульным (Б) и низкомодульным (буква А).

  • Лучшие показатели натриевого стекла в качестве вяжущего для огнеупорной смеси – при силикатном модуле 2.0-3.5, калиевого – 2.5-4.0.
  • Жидкое стекло твердеет долго, поэтому в смесь добавляют разные отвердители (соединение кремниефторида натрия, фторсиликат щелочных металлов). Кроме быстрого твердения, эти вещества способствуют повышению прочности, плотности раствора. Также для ускорения твердения можно добавлять феррохром, шлаки ферромарганца, нефелиновый шлам.
  • Стоит отметить, что в состав смесей могут вводиться разнообразные пластификаторы, тонкомолотые добавки, регуляторы, присадки для лучшей удобоукладываемости.
  • На кубический метр бетона нужно примерно 250-400 кг/м3 вяжущего, отвердителя – 0.1-0.2 частей от веса вяжущего. Заполнителя понадобится около 0.12-0.3 веса жидкого стекла.
  • Раствор на базе жидкого стекла замешивают на объекте, так как заливать смесь нужно в течение получаса. Укладка производится при температуре минимум +15С, влажность должна составлять максимум 70%.

Другие виды бетонов, стойких к огню

В производстве легких ячеистых/поризованных бетонов используются те же вяжущие, но пористые заполнители или пенообразователи, которые уменьшают вес.

Легкие поризованные бетоны

Тут в качестве заполнителя используют разного типа пористые материалы, способные выдерживать влияние температуры до +1000С: вулканический туф, вспученный перлит, керамзит. Легкие бетоны соответствуют маркам D300-1800.

Классификация поризованных бетонов по сфере эксплуатации:

  • Конструкционные – с плотностью 1400-1800 кг/м3, прочностью минимум М50, любой теплопроводностью.
  • Теплоизоляционные – с плотностью максимум 500 кг/м3, прочностью в диапазоне М14-М25, теплопроводностью максимум 0.14 Вт/м*К.
  • Теплоизоляционно-конструкционные – прочность минимум М35, теплопроводность в пределах 0.14–0.54 Вт/м*К, плотность равна 500-800.

Легкие бетоны, приготовленные на базе портландцемента или глиноземистого цемента, демонстрируют высокий уровень огнестойкости. Если использовать керамзитовый щебень в качестве заполнителя, то морозостойкость вырастает до F25-100.

Ячеистые бетоны

Данный тип раствора применяется в теплоизоляции и в качестве жаростойкого материала. Часто ячеистые бетоны выбирают для частного строительства в виде заводских конструкций либо блоков.

  • Для теплоизоляции – плотность до 500 кг/м3
  • Теплоизоляционно-конструкционные – показатель находится в диапазоне 500-900 кг/м3
  • Конструкционные – от 1000 до 1400
  • Жаростойкие – до 1200 кг/м3, могут использоваться при температуре до +800С

Данный тип бетонов может выдерживать воздействие открытого огня в течение 5-7 часов без изменения структуры. При нагревании до +400С отмечается повышение прочности материала, до +1000С – разрушение структуры.

Когда готовится жаропрочный бетон своими руками, предел огнестойкости ячеистого материала можно повысить посредством введения в состав алюмосиликатных щелочных вяжущих, металлургических шлаков, допускаются и топливные золы, известково-белитовые составы.

огнеупорная бетонная смесь

Применение

Обычно огнеупорный и жаростойкий бетон актуален для использования в возведении химических, энергетических, металлургических сооружений. Материал подходит для сооружения плавилен, доменных печей, теплоцентралей.

В быту необходимость приготовления термостойкого бетона появляется при строительстве печей, котлов отопления, каминов. Также из раствора делают выводы труб, выкладывают отопительные контура. В частном строительстве бетон готовят своими руками, используя специальные компоненты и точно следуя инструкции, соблюдая указанные пропорции.

Новые конструкции вводятся в эксплуатацию минимум после 3 суток (быстротвердеющий цемент, глиноземистый, жидкое стекло), 7 суток (портландцемент) или после набора проектной прочности монолитом. До нагрева конструкции просушивают для полного удаления свободной воды в составе. Разогревают по специальным режимам, в соответствии с технологическими инструкциями.

применение жаропрочного бетона

Производство в домашних условиях

Проще всего сделать жаростойкий бетон своими руками – купить готовую смесь и замесить раствор по инструкции (обычно находится на оборотной стороне тары). Все очень просто: сухая смесь высыпается в бетономешалку, мешается в течение 1 минуты, затворяется обычной водой или жидким стеклом.

  • Выбор оптимального состава материалов.
  • Заливка в бетономешалку 90% нужного объема воды либо жидкого стекла (в разбавленном виде).
  • Засыпка тонкомолотой добавки, добавление половины заполнителя и цемента, перемешивание, постепенное добавление оставшихся материалов, остатка воды (или стекла).
  • Замес должен осуществляться на протяжении минимум 5 минут.
  • Отгрузка готовой смеси непосредственно на объекте, заливка.

Бетонные работы в условиях сухого и жаркого климата

В условиях жаркого, сухого климата температура воздуха может подниматься до +40С, влажность обычно не превышает 25%, наблюдаются ветры и сильная солнечная активность. Все это плохо сказывается на бетонной смеси, провоцирует быстрое испарение воды, понижение прочности.

  • Правильно выбрать состав компонентов – в качестве вяжущего лучше всего брать портландцемент, заполнителя – материалы с идентичным показателем температурного расширения (близким к цементу).
  • Заполнители обязательно увлажняют.
  • Использование пластификаторов – для понижения водоцементного соотношения и улучшения подвижности.
  • Увеличение времени смешивания компонентов в среднем на 40-50%.
  • Смесь до объекта можно транспортировать исключительно в автобетономешалке, загрузив в миксер лишь сухие компоненты, а водой затворяя уже перед заливкой.
  • Опалубка перед заливкой проверяется на предмет герметичности и увлажняется.
  • Смесь подается на объект с использованием специальной бадьи или бетононасоса.
  • Бетонирование осуществляется с применением глубинного вибратора.
  • В процессе набора прочности смесью бетон нужно накрывать увлажненными матами из соломы, кусками рогожи, мешковины, потом каждые 3-4 часа поливать водой все 28 дней.

заливка огнеупорного бетона

Приготовленный по всем правилам жаростойкий или огнеупорный бетон будет демонстрировать все заявленные характеристики и позволит реализовать любой проект, гарантируя высокое качество и оптимальные свойства, надежность и долговечность конструкции.

Бетон жаростойкий, понятие огнестойкости бетона

Toggle navigation

Ремонт в регионах

Бетон — огнестойкий материал. Поэтому он идет на изготовление железобетонных дымовых труб, некоторых частей печей, их фундаментов, сборных отопительных печей. Его огнестойкость имеет большое значение при пожарах, когда температура, действующая на железобетонные конструкции, может достигать 1000°

Огнестойкость бетона

Воздействие высоких температур на бетон

Разрушение материала происходит послойно за счет ослабления прочности и давления паров, проникающих в поры конструкции. Структура видоизменяется вследствие высокой температуры в различных диапазонах:

  • Если температура при пожаре не достигла 200 °C, сжатие конструкции не происходит. При 250 °C и низкой влажности наступает стадия хрупкого разрушения.
  • При воздействии жара до 350 °C на поверхности бетона образуются трещины от усадки материала.
  • При температурном режиме, достигающем 450 °C, трещины возникают уже в зависимости от состава цемента и его характеристик.
  • Температура свыше 573 °C разрушает структуру бетонного слоя из-за изменения свойства α-кварца в β-кварц, увеличивая объем.
  • Температурные режимы от 750 °C приводят к полному разрушению бетона.

Кроме вида цемента на огнестойкость бетона оказывает влияние также род заполнителя.

При температуре выше 600° не следует применять заполнители, содержащие кварц (песчаник, кварцит, гранит), так как кварц при таком нагревании значительно увеличивается в объеме. Лучше использовать известняк, но при температуре не выше 900°.

Прочность обычного бетона при длительном нагревании

Прочность обычного бетона при длительном нагревании начиная с температуры 70°, понижается и при 200° падает до 50%. Это понижение не является катастрофическим, так как со временем оно ие увеличивается, но все же следует предохранять бетон от воздействия температуры выше 70° и учитывать при проектировании составов бетона неизбежную потерю прочности.

При действии постоянной температуры выше 200° бетон необходимо изолировать теплоизоляционной штукатуркой, засыпкой, кирпичом и т. п.
При нагревании выше 500° и последующем увлажнении обычный бетон разрушается вследствие дегидратации Са(ОН)2 и дальнейшего гашения свободной извести.

огнестойкий бетон

Характеристика бетон жаростойкий

Жаростойкость – это способность бетонов сохранять свои свойства при длительном или даже постоянном воздействии высоких температур во время эксплуатации тепловых агрегатов.

Жаростойкий бетон изготовляют применяя глиноземистый, шлаковый или обыкновенный портландцемент; к последнему добавляют 25% молотой добавки; заполнители изготовляют из огнестойких, тугоплавких или огнеупорных материалов. Такой бетон может служить при температуре до 1250° в сухой среде и не разрушаться, хотя и теряет от 25 до 60% прочности.

Молотые добавки и заполнители для бетона, подвергающегося нагреванию до 900°, изготовляют из кирпичного боя или доменного шлака; до 1250° — из шамота, огнеупорной глины и хромистого железняка. С этими же заполнителями можно изготовлять жаростойкий бетон на растворимом стекле с добавкой кремнефтористого натрия (так же как и кислотоупорный бетон.

Жаростойкий бетон предложен и разработан К. Д. Некрасовым и др. Он применяется частично при возведении промышленных печей, труб, обмуровке котлов и т. п

Марки

Жаростойкие бетоны марок 100—700 являются безобжиговьш материалом, сохраняющим в заданных пределах при длительном воздействии высоких температур свои физико-механические свойства. Вследствие этого их применяют в промышленных тепловых агрегатах и строительных конструкциях, подвергающихся длительному нагреванию.

Бетоны приготовляют на гидравлических, воздушно-твердеющих вяжущих и на химическом связующем. К первым относятся бетоны на портландцементе (шлакопортландцементе), глиноземистом и высокоглиноземистом цементах, ко вторым — на жидком стекле или периклазовом цементе и к третьим — на фосфатной связке.

Высокоглиноземистый цемент— гидравлическое вяжущее, содержащее не менее 75% окиси алюминия (АlОз). Периклазовым цементом называют воздушновяжущее, получаемое тонким измельчением высокообожженного рекристаллизованного при спекании магнезита, не содержащего свободной окиси кальция, и затворяемое водным раствором сернокислого магния.

Читайте также:  Абиссинский колодец своими руками технология устройства скважины-иглы

Жаростойкие бетоны, в зависимости от степени огнеупорности, подразделяют

  • на высокоогнеупорные (огнеупорность выше 1770°),
  • огнеупорные (огнеупорность от 1580 до 1770°) ,
  • жароупорные с огнеупорностью ниже 1580°.

Требуемая степень жароупорности бетона достигается выбором вида вяжущего, тонкомолотой минеральной добавки и заполнителей. В соответствии с объемным весом жаростойкие бетоны делятся на тяжелые и легкие; бетоны с объемным весом в высушенном состоянии менее 1500 кг/мг называются легкими.

В результате работ проф. К. Д. Некрасова были созданы эффективные жаростойкие бетоны.

Бетон на портландцементе

Для получения жаростойкого бетона при эксплуатационной температуре до 350° с прочностью 100—200 кг/см2 вместо обычного заполнителя применяют бой глиняного кирпича, отвального доменного шлака, артикского туфа, а с прочностью до 250 кГ/см2 заполнителями служат известняк, андезит, базальт, диабаз.
Для получения бетона, работающего при температуре до 700—800°, к портландцементу добавляют тонкомолотые цемянки, доменный гранулиновый шлак, пемзу и т. п., а в качестве заполнителей— указанные выше материалы. При температуре до 1200° в качестве вяжущего применяют смесь портландцемента с тонкомолотым шамотом (в пропорции 1:0,3 по весу). Шамот служит также мелким и крупным заполнителем.

Способ получения жаростойкого бетона на портландцементе с тонкомолотыми минеральными добавками основан на том, что последние, взаимодействуя со свободной окисью кальция цементного камня, способствуют сохранению необходимой прочности и структуры затвердевшего цементного камня при его нагревании и после охлаждения. Кроме того, введение минеральной добавки повышает прочность цементного камня в интервале температур от 100 до 200°. Заполнителями служат достаточно огнеупорные материалы.

жаростойкий бетон своими руками

Жаростойкие бетоны на портландцементе, в зависимости от вида добавки и заполнителя, применяют при эксплуатационной температуре до 1700°.

Прочность бетона после первого нагревания до температуры 800—1000° уменьшается, но последующего заметного снижения ее после длительного нагревания не происходит и бетон сохраняет необходимые свойства.

Технология изготовления жаростойкого бетона такая же, что и обычного. Для ускорения твердения бетона можно применять электропрогрев, пропаривание и запаривание в автоклавах.

Бетоны на глиноземистом и высокоглиноземистом цементах

При гидратации глиноземистого цемента гидрат окиси кальция Са(ОН)2 в свободном состоянии не выделяется. Это позволяет на основе такого цемента приготовлять жаростойкий бетон без введения тонкомолотой добавки, ограничиваясь пылевидными фракциями, содержащимися в заполнителях. Прочность такого бетона после первого нагревания также снижается.

Бетон на глиноземистом цементе с различными огнеупорными заполнителями весьма стоек к высоким температурам, порядка 1300—1400°. Применять его при эксплуатационной температуре ниже 800° технически нецелесообразно и экономически невыгодно.

При температуре выше 1400° С можно применять бетоны на высокоглиноземистом цементе с огнеупорными заполнителями (обожженным каолином, хромитом, силлиманитом, корундом, карборундом). Этот цемент имеет более высокую огнеупорность (не ниже 1800°), повышенную температуру деформации под нагрузкой, незначительную усадку и малый коэффициент термического расширения.

что такое огнестойкость бетона

Бетоны на этом цементе способны выдерживать температуру до 1700°.

Бетон на жидком стекле

Бетон на жидком стекле обладает не только жаростойкими свойствами, но и достаточной стойкостью во многих агрессивных средах (кислая среда, кроме плавиковой кислоты, расплавов натриевых и других солей).

Вяжущим служит жидкое стекло, обычно с оптимальной добавкой кремнефтористого натрия, обеспечивающего нормальные сроки схватывания и твердения. Наибольшую термическую стойкость имеет бетон с шамотным заполнителем; при менее термостойких заполнителях (магнезите, хромите или дуните) термостойкость бетона понижается.

В зависимости от вида тонкомолотой добавки и заполнителя прочность бетона на жидком стекле при сжатии составляет от 100 до 300 кГ/см2, и такие бетоны применяют при температуре до 1400°С.

Бетон на периклазовом цементе

Бетон на периклазовом цементе приготовляют из высокорекристаллизованного спекшегося магнезита, не содержащего свободной окиси кальция, и смесь затворяют раствором сернокислого магния.

Структурные изменения магнезиально-бетонных блоков при высоких температурах обусловлены усадкой периклазового цемента (вследствие его спекания) и ростом объема зерен заполнителей (в результате образования шпинели и твердого раствора магнезиальных шпинелей), компенсирующих усадку цемента и затрудняющих спекание бетона. Это обеспечивает постоянство объема жаростойкого бетона блоков в промышленных печах и позволяет применять его при температуре до 1700°.

Бетон на алюмофосфатной связке

Бетон на алюмофосфатной связке, в которой используется белый электрокорунд, затворенный ортофосфатной кислотой, выдерживает температуру до 1800°, имеет высокую прочность и начинает применяться в промышленности.

Легкие жаростойкие бетоны

Легкие жаростойкие бетоны подразделяют на теплоизоляционные с объемным весом 600—1000 кг/м3, конструктивные (неармированные) с объемным весом свыше 1000 и до 1500 кг/м3 и с прочностью при сжатии до 250 кг/см2. В таких бетонах вяжущим служит портландцемент, глиноземистый цемент или жидкое стекло, а заполнителем — керамзит, вспученный перлит или вермикулит.

Бетон жаростойкий, понятие огнестойкости бетона

Разработано и успешно применяется несколько видов огнеустойчивого бетона.

По основной классификации термостойкий материал бывает:

По температуре применения материал разделяется на:

  • жароупорный, способный выдерживать температуру до 1580 °С;
  • огнеупорный, выдерживающий воздействие температуры от 1580 до 1770 °С;
  • высокоогнеупорный, противостоящий температуре свыше 1770 °С.

Нагревание бетонного блока

По виду использования бетонные блоки могут быть конструкционными и теплоизоляционными.

Популярен сухой огнеупорный состав, некоторые модификации которого могут противостоять воздействию температур до 2300 °С. Существенным недостатком сухих смесей является небольшой срок годности, потому приобретение крупной партии полуфабриката нецелесообразна.

Сухая смесь

Особенности замешивания

Перед тем как сделать огнеупорный бетон своими руками, состав раствора необходимо очень тщательно подобрать. Об этом было сказано выше. Что же касается особенностей замешивания, то для этого рекомендуется использовать Она предпочтительна для теплоизоляционных бетонов, а вот для плотных растворов и вовсе необходима, так как позволяет равномерно и правильно замешивать материал с добавлением меньшего объема воды. Что касается бетономешалки, то этого эффекта добиться будет весьма сложно.

Данная рекомендация актуальна еще и по той причине, что для плотного бетона содержание влаги может оказаться критичным. Ведь для описываемых материалов максимальная прочность требуется наряду с оптимальной плотностью. По своей природе теплоизоляционные бетоны мягче, чем плотные, поэтому важно, чтобы они замешивались с использованием требуемого количества воды. Ее излишек может стать причиной снижения прочности и плотности, тогда как недостаток повлечет уменьшение текучести.

Состав и основные характеристики

Специфические технические и эксплуатационные характеристики жаростойкого бетона обусловлены включением в состав огнеупорных ингредиентов. Основной вяжущий компонент — портландцемент. Наполнитель — отсевы горных пород, отходы металлургии либо синтетические вещества.

Термостойкий бетон обладает высокими прочностными характеристиками — показатель прочности на сжатие находится в диапазоне 200-600 МПа/см2.

Термическая устойчивость материала проявляется при температуре до 500 °С. При длительном воздействии на бетон открытого огня либо при его продолжительном соприкосновении с раскаленными поверхностями, показатели прочности материала значительно снижаются, приводя к образованию внутренних и поверхностных дефектов.

Глиноземистый бетон отличается устойчивостью, даже при термическом воздействии до 1600 °С. При постепенном увеличении температуры, цементный состав запекается и преобразуется в керамическую массу, благодаря чему жаропрочность материала увеличивается.

Тем не менее, глиноземистый огнеупорный бетон отличается относительно невысокой прочностью. Материал способен выдерживать давление не более 25-35 МПа/см2.

Достоинства

Огнеупорные марки цемента имеют следующие достоинства:

  • способность выдерживать действие открытого огня;
  • стойкость при непродолжительном нагревании свыше 3000 ℃;
  • высокая механическая прочность;
  • увеличенная адгезия по сравнению со всеми остальными видами смесей;
  • большая скорость полного затвердевания массы;
  • инертность по отношению к агрессивному влиянию внешней среды.

Жаропрочный цемент мелко измельчают, после чего однородный порошок просеивают через сито №008, получая 90% материала. Фракция с зернами покрупнее составляет не больше 10 %. Цементная смесь с обычным содержанием глинозема окрашена в серые или светло-коричневые цвета; с повышенной концентрацией термостойкого компонента – в белые или светло-стальные цвета. Плотность огнеупорного порошка отличается: ее минимальный показатель составляет 2,8 г/см2, максимальный – 3,2 г/см2.

Продукт с улучшенными огнеупорными качествами готовят по стандартной технологии, используя обычное количество песка и воды. При этом застывания портландцемента приходится ждать от 1 до 3 суток, а огнеупорные марки затвердевает полностью за 10 часов даже во влажном окружении.

Из негативных аспектов, характеризующих термостойкий цемент, отмечают повышенную цену по сравнению с другими сортами, что вполне понятно. Некоторые авторы говорят о вредном влиянии на огнеупорный материал щелочей. Возможно, концентрированные щелочи в каких-то условиях могут вступать в реакции с определенной частью огнеупорного сырья, но на практике щелочных воздействий такого рода быть не может ни при каких ситуациях.

Сфера применения

Область использования материала не ограничивается только изготовлением устойчивых к термическому воздействию конструкций: камер сгорания, домашних либо промышленных печей, коллекторов и фундаментов. Благодаря включению в состав специфических ингредиентов, материал широко используется и в производстве строительных материалов, химической промышленности, энергетической сфере.

Сооружение бытовых печей

Жаропрочный бетон применяется также и для возведения плавучих конструкций, перекрытий, мостов — в сооружениях, требующих высокой прочности материала при малом весе. Относительно небольшая масса бетона обусловлена добавлением пористых наполнителей.

Самостоятельное приготовление

Жаропрочный бетон, изготовленный своими руками, будет обладать всеми необходимыми характеристиками и свойствами. При выполнении работ необходимо следовать инструкции и соблюдать все технологические нормы производства, только тогда вы получите состав, не уступающий заводскому аналогу по термоизоляционным свойствам и устойчивости к температурным перепадам.

Для изготовления жаропрочного бетона можно использовать сухую смесь, продающуюся в строительных гипермаркетах и рынках, либо самостоятельно смешивая компоненты в требуемых пропорциях. Первый вариант, несомненно, надежнее, так как состав готовой смеси сбалансирован и готов к использованию.

Особенности изготовления

Если вы решили изготовить огнеупорный бетон, то следует ближе ознакомиться с его составом. Материал выполняется на основе базовых компонентов и некоторых добавок, среди которых выступают:

  • шамотный песок;
  • магнезит;
  • разные ;
  • глиноземистый цемент.

Среди добавок следует выделить еще тонкомолотые и минеральные вещества, которые придают материалу прочность. Среди таких добавок:

  • пемза;
  • мелкоизмельченная хромитовая руда;
  • доменный шлак.

Эти компоненты добавляются с целью повышения плотности не только готового изделия, но и сухого состава. Иногда заполнители для производства изготавливаются в условиях завода, но в некоторых случаях могут использоваться тугоплавкие горные породы и бой обожженного огнеупорного кирпича. Для получения разных марок бетона добавляются заполнители разных фракций. Если речь идет о крупнозернистом веществе, то его элементы могут иметь диаметр в пределах от 5 до 25 мм. Когда речь идет о мелкой фракции, то она равна пределу 0,15 и 5 мм. Среди таких ингредиентов следует выделить:

  • магнезитовый кирпич;
  • шамотный кирпич;
  • бой обыкновенного кирпича;
  • глиноземистый шлак;
  • диабаз;
  • базальт;
  • отвальный доменный шлак.

Самым распространенным среди потребителей является огнеупорный бетон, который изготавливается с использованием шамота, ведь он отвечает всем запросам строительства. В качестве связующего звена выступают алюмофосфатные ингредиенты и жидкое стекло. Портландцементы, периклазовые и и выполняют роль вяжущих компонентов. Если к ингредиентам добавляется жидкое стекло, то оно позволяет повышать эксплуатационные характеристики. Это особенно верно, если бетонный раствор используется для формирования штукатурного слоя.

Состав которого описывается в статье, может иметь определенную марку. Каждая разновидность предполагает добавление своего пластификатора, магнезитовых порошков и феррохромовых шлаков. Если есть цель приготовить легкий бетон, то следует использовать вспученные материалы по типу:

  • вермикулита;
  • керамзита;
  • перлита.

Если вы решили заказать изготовление смеси у профессионала, то соотношение компонентов они подберут сами, в соответствии с вашим проектом. Состав подбирается по эксплуатационной температуре и условиям службы.

Материалы и инструменты

Для производства огнеупорных бетонных блоков потребуется подготовить следующие инструменты:

  • тачку;
  • бетономешалку;
  • шланг;
  • опалубку;
  • мастерок;
  • виброинструмент (например, перфоратор);
  • распылитель;
  • лист пластика;
  • огнеупорный цемент;
  • гашеную известь;
  • гравий.

Также отнюдь не лишним является и использование добавок:

  • асбеста;
  • бариевого цемента;
  • жидкого стекла.

Эти присадки придадут бетону все необходимые характеристики, позволяющие использовать его при возведении конструкций, которые будут эксплуатироваться при высоких температурах.

Читайте также:  Виды стальных труб и их обозначения

Жаростойкий бетон изготавливается своими руками следующим образом:

  1. В бетономешалку насыпается цемент и песок в пропорции 1:4.
  2. При перемешивании в смесь постепенно заливается вода (желательно фильтрованная) и тонкомолотые компоненты до получения тестообразной консистенции.

Полезно! Для улучшения результата рекомендуется использовать ингредиенты комнатной температуры — 15-20 °С.

Заливка смеси

Приготовленную бетонную смесь необходимо залить в опалубку либо формы, предварительно смазанные жиром или силиконом для недопущения потери влаги и упрощения извлечения застывшего блока.

Работа должна выполняться оперативно, так как раствор отличается высокой плотностью и быстро застывает. Раствор укладывается лопатой с небольшим запасом, излишки при этом убираются мастерком.

Жаростойкий бетон в форме

Уплотнение

Уплотнение бетонной смеси производится при помощи различных трамбовочных механизмов: погружных либо поверхностных вибраторов. Рабочая часть инструмента помещается в наполненную смесью форму и на протяжении минуты производится усадка раствора.

Основная цель уплотнения — устранение пузырьков воздуха, негативно влияющих на характеристики материала, а также снижающих его качество и эксплуатационные свойства.

Выдержка и увлажнение

По окончании уплотнения раствор оставляется для затвердевания. При естественном твердении из смеси испаряется влага, что может привести к растрескиванию блоков. Поэтому раствор необходимо периодически увлажнять, обрызгивая его водой.

В первые 48 часов затвердевающие блоки укрываются полиэтиленовой пленкой. Через два дня пленка убирается, блоки извлекаются из форм и переносятся в теплое помещение на 28 суток, требующихся для окончательного набора прочности.

На завершающем этапе изготовления материала, следует промыть, применявшееся оборудование и удалить с него остатки смеси. Лучше очищать инструменты сразу после их использования, чтобы цементный раствор не успех засохнуть.

Стоимость продукции разных марок

Цена жаростойких материалов зависит от разных факторов, включая сезонный. Если они выпускаются в летний период, их стоимость повышается, поскольку объемы строительных работ стремительно растут. Зимой цемент более дешевый и продается как в розницу, так и оптом.

Таблица стоимости выглядит таким образом:

  1. 50 кг цемента ГЦ-40 обойдется по цене 1,3-1,4 тыс. рублей.
  2. 50 кг цемента Gorkal 40, производимого польской компанией, будут стоить 1,4-1,5 тыс. рублей.
  3. Российский цемент ВГЦ-50 продается по цене 1,8 рубля за 20 кг.

Перед тем как приобрести смесь, нужно ознакомиться с наличием сертификатов качества и ее маркой.

Огнестойкость бетона: предел жаростойкости

В настоящее время не существует, наверное, ни одной области строительства, где не применялся бы бетон – это самый востребованный материал в строительной индустрии. Бетон обладает несущей способностью, не поддается коррозии, которая разрушает даже сталь. Но самые ценные свойства данного материала – высокая прочность и огнестойкость.

Бетон способен сопротивляться температуре свыше 1000 градусов по °С несколько часов подряд, выдерживает многократное замерзание и оттаивание. Под воздействием длительного интенсивного влияния огня бетон меняет свои свойства, снижаются прочностные характеристики. В зонах повреждения величина влияния огня на бетон определяется термическим анализом.

Определение температуры воздействия

Существует несколько методов определения температурных воздействий на бетонные сооружения после их повреждения.

По звуку

Степенью повреждённой структуры бетона возможно установить температуру огня, методом простукивания:

  • звук исходящий от бетона имеет высокий тон;
  • при сильном повреждении этот звук при ударе превращается в глухой.

С помощью ультразвука

Температуру огня возможно определить с помощью ультразвука. При условии, что прочность бетона и время воздействия на него огня известны, вычисляется скорость распространения ультразвука.

По внешнему состоянию

При 200-400 °С наблюдается местное разрушение, при интенсивном нагреве 700-900 °С происходит массивное разрушение. Под воздействием пламени 1000-1200 °С и выше бетон взрывается.

Если на повреждённой бетонной конструкции наблюдаются микротрещины, значит, температура достигала 400 °С; при более высокой температуре появляются макротрещины. Если температура воздействия огня превышала 700 °С, бетонные конструкции разрушаются после резкого увлажнения или охлаждения.

По цвету

Когда уровень теплового излучения достигает 300 °С, его цвет меняется на розовый, при 400-600 °С бетон становится красным, при 900-1000 °С цвет меняется на бледно-серый.

По следам эрозий

Установить температуру огня, воздействующую на бетон, возможно также степенью оплавления и по следам тепловых эрозий:

  • при 200-400 °С происходит умеренное повреждение, снижается прочность стройматериала;
  • 400-800 °С полностью разрушается конструкция бетона;
  • 800-1600 °С оплавляются неогнеупорные компоненты;
  • если температура выше 1600 °С оплавляются огнеупорные вещества;
  • При температурах свыше 1200 °С поверхностный слой бетона начинает трескаться, некоторые вещества начинают плавиться.

Предел и степень огнестойкости

Проверка огнестойкости бетона

Устройство для измерения свойств бетона

Сопротивление к температурным воздействиям, сохраняя при этом свои прочностные свойства, определяет стойкость бетона. Огнестойкость бетона вычисляется промежутком времени, за который он разрушается до критического состояния.

Бетонные сооружения обладают высоким пределом огнестойкости. Этот параметр зависит от толщины бетона (огнестойкость повышается по мере увеличения толщины строения).

Степень огнеопасности – крайне важный показатель. Нормируется I–V степенями, которые устанавливаются пожарно-технической экспертизой. Сооружения из бетона относятся к I–II степени и соответствуют самым высоким нормативным требованиям огнестойкости.

Таблица 1 – Предел и степень огнестойкости по толщине и времени

Толщина бетонаПредел огнестойкостиСтепень огнестойкости
Ж/б плитыЖ/б балкиНесущие ж/б стены1,11
80 мм160 мм60 мин
100 мм280 мм140 мм90 мин
120 мм300 мм160 мм120 мин
140 мм400 мм200 мм150 мин
155 мм500 мм240 мм180 мин
Ж/б колонныПредел огнестойкости1,11
150×150 мм60 мин
200×200 мм90 мин
300×300 мм120 мин
400×400 мм130 мин
Бетонные перегородкиПредел огнестойкости1,11
60 мм45 мин
70 мм60 мин
90 мм90 мин

Испытание бетона на огнестойкость

На огнестойкость бетон испытывается имитированием условий реального пожара на модельном устройстве. Во время испытания возможно контролировать огонь и наблюдать, как бетон реагирует на различные изменения. В экспериментальном здании устанавливаются температурные датчики, которые фиксируют внутреннюю и внешнюю температуру строения.

Получаются данные в режиме реального времени, измеряются: временной промежуток, за который здание выдержит максимальную возможную при реальном пожаре температуру; и температура плавления бетона в градусах (также теплопроводность жаростойкого и ячеистого бетона).

Бетон состоит из нескольких веществ, и каждый отдельный компонент плавится при разных условиях. Например:

  • керамзит – при температуре 1100-1150 °С;
  • полевые шпаты поддаются огню в 1300-1500 °С;
  • кремнезем – 1700-1710 °С;
  • глинозем способен противостоять температурному воздействию до 2000-2050 °С.

Марка огнестойкого бетона

Бетона марки СБСПЛ-1500

Работа с огнеупорным бетоном марки СБСПЛ-1500

Благодаря своим высоким параметрам жаростойкости и теплопроводимости большой популярностью пользуется ячеистый бетон. Чтобы получить пористый бетон, в производстве к основным компонентам добавляют водород, и в процессе газообразования появляются пузыри.

Ячеистый бетон за счет минимальной плотности обладает большой огнестойкостью: при испытании на перепады температуры через ноль выдерживает до 150 циклов. Один цикл – до 3 лет жизни материала. Ячеистый бетон толщиной 150 мм обладает огнестойкостью 2,5 ч и соответствует требованиям норм строительных материалов.

Он отличается своей высокой жаростойкостью. Благодаря этому качеству, бетон сохраняет свои характеристики под долговременным воздействием высокой температуры.

Области применения

Информация об огнестойкости бетона крайне важна. Она делает возможным оценку жаропрочности бетонных конструкций и проверку соответствия международным требованиям.

Огнестойкий бетон применяется в строительстве и делает возможным реконструкцию сооружений после пожара.

Как определяется жаростойкость бетона?

При пожаре свойства железобетонных конструкций проявляют себя в огнеупорности и жаростойкости. Температура плавления бетона равна 1100—2000 °C в зависимости от внутреннего состава, добавленного в раствор. Начиная с 200 °C, происходит снижение прочности и растрескивание, но материал довольно огнестойкий и медленно модифицируется за счет малой скорости нагревания поверхности. Тепло выделяется в процессе испарения воды при разрушении целостности цемента, таким образом позволяя сопротивляться непродолжительному влиянию высоких температур. Для строительства рекомендуется использовать бетон с жаростойкими характеристиками.

Воздействие высоких температур на бетон

Разрушение материала происходит послойно за счет ослабления прочности и давления паров, проникающих в поры конструкции. Структура видоизменяется вследствие высокой температуры в различных диапазонах:

  • Если температура при пожаре не достигла 200 °C, сжатие конструкции не происходит. При 250 °C и низкой влажности наступает стадия хрупкого разрушения.
  • При воздействии жара до 350 °C на поверхности бетона образуются трещины от усадки материала.
  • При температурном режиме, достигающем 450 °C, трещины возникают уже в зависимости от состава цемента и его характеристик.
  • Температура свыше 573 °C разрушает структуру бетонного слоя из-за изменения свойства α-кварца в β-кварц, увеличивая объем.
  • Температурные режимы от 750 °C приводят к полному разрушению бетона.

Бетонные части при пожаре не стоит поливать водой, так как это ведет к растрескиванию материала с разрушением верхнего слоя защиты, обнажая арматуру.

Температура плавления бетонных конструкций

В зависимости от температуры, которая воздействует на материал, происходит деформация и изменение цвета.

В журнале Civil Engineering в 2010 году были опубликованы методы определения критических температур и деформаций для решения вопросов огнеупорности. Согласно этому, расплав каждого элемента, который находится в составе цементного камня, меняется в зависимости от наличия даже небольшого количества примеси. По внешнему состоянию определяют температуру плавления:

  • Не достигая отметки в 300 °C, цвет конструкции становится розовым, на верхний слой налипает сажа.
  • При 600 °C окрашивается в красный, выгорает сажа.
  • При более высоких температурных режимах бетон становится бледным.

Самыми уязвимыми частями при пожаре считают изгибаемые элементы: балки, плиты и ригели. Арматура в этих конструкциях покрыта тонким слоем бетона. Поэтому эта часть быстро прогревается до критических температур и разрушается. Согласно предоставленной информации строительной документации по расчету огнестойкости и огнесохранности железобетонных конструкций, ее остаточную прочность после стандартного пожара считают допустимой при сохранении основных характеристик. Расчет проводят на основании расчетных нагрузок, сопротивлении бетонного слоя и арматуры. При постройках зачастую делают искробезопасный пол. Покрывают его эпоксидной основой или полиуретаном.

Особенности огнестойких бетонов

Жаростойкий бетон производят с помощью материалов, которые под воздействием высоких температур не меняют свои характеристики. Для повышения жаропрочности применяют следующие методы:

  • Исключая плавление, горение и другие разрушения, в раствор вводят алюминиевые и кремниевые составляющие.
  • Для получения стандартной плотности до 600 МПа/см² домешивают в состав портландцемент.
  • Добавляют в смесь пористые вулканические или искусственные огнеупорные породы.

В состав ячеистых бетонов входит заполнитель на минеральной кремниевой основе. Так как кремний имеет свойство жаропонижения, то этот материал наиболее часто используют при строительстве с повышенными требованиями пожароопасности. Помимо этого, огнестойкие виды применяют для изготовления камер горения, тепловых электростанций и прочее.

Уровень огнестойкости железобетонных конструкций и колон

ЖБ конструкции с тонкими стенками в основном не имеют единой монолитной связи с другими частями. Они способны выдерживать температуру пламени и осуществлять свои основные функции на протяжении 1 часа. Максимальный уровень огнестойкости обусловлен размерами сечения конструкции, вида арматуры, качества класса бетона, выбранного вида заполнителя, защитного бетонного слоя и нагрузки, которую выдерживает конструкция.

Предел стойкости перекрытий, стен и колонн зависит от качества цементного раствора, его характеристик и толщины конструкций. Максимально крепкой считают сталь с температурными нагрузками до 1570 °C. Огонь наклоняет стены при возгораниях в сторону за счет прогревания с одной стороны. Чем больше нагрузка и меньше толщина слоя, тем ниже уровень сопротивляемости. Колонны могут сопротивляться действию разрушений за счет приложения нагрузки (центральной или вне ее центра), количества и качества крупного заполнителя, объема арматуры и защитного слоя из бетона.

Ссылка на основную публикацию